
Robot Learning
Meta & Multi-task Learning



Project milestone report

• 5% of the overall class grade (=12.5% of the project grade)

• 2 pages

• You don’t have to re-introduce the project. You can assume we 
already know it, unless…
• You partially and fully changed your project after the proposal report.

• Our feedback to your proposal included some clarification questions.
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Project milestone report

• Describe the progress since the proposal report.
• Did you complete the mathematical formulation / solution? Share your work.

• Did you implement something? Share any results you may have.

• Did you read many papers? Share what you learned and how they are 
related to your project.

• Describe what else remains to be done.
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Today…

• Multi-task Learning

• Transfer Learning

• Meta Learning
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What is a task?

maximize
𝜋

 𝔼𝒘 ෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝑎𝑡

 

subject to 𝑠𝑡+1 = 𝑓 𝑠𝑡, 𝑎𝑡 , 𝑤𝑡
 𝑎𝑡 = 𝜋(𝑠𝑡)
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More generally in machine learning, a 
dataset-loss function pair defines a task.



What’s wrong with single-task learning?
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What’s wrong with single-task learning?
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Still... Why multi-task learning?

We could just learn each task independently!

• What if we have little data for some tasks?

• What if we have little time to learn some tasks?
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Still... Why multi-task learning?

You should learn each task independently if there is no shared 
structure between the tasks.
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Left: Playing atari with deep reinforcement learning
Mnih et al., NeurIPS Deep Learning Workshop 2013
Right: Windy.com Community



Still... Why multi-task learning?

In real life, many tasks share structure!
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Today…

• Multi-task Learning

• Transfer Learning

• Meta Learning
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Today…

• Multi-task Learning: Learn multiple tasks together

• Transfer Learning

• Meta Learning
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Today…

• Multi-task Learning: Learn multiple tasks together

• Transfer Learning: Learn multiple tasks and transfer your 
knowledge to a new one

• Meta Learning
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Today…

• Multi-task Learning: Learn multiple tasks together

• Transfer Learning: Learn multiple tasks and transfer your 
knowledge to a new one

• Meta Learning: Learn multiple tasks such that adapting to a 
new task will be easy
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Today…

• Multi-task Learning: Learn multiple tasks together

• Transfer Learning: Learn multiple tasks and transfer your 
knowledge to a new one

• Meta Learning: Learn multiple tasks such that adapting to a 
new task will be easy
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Multi-task learning

Common solution:

1. Sample tasks from the task distribution 𝑃(𝜏)

2. Compute their losses

3. Sum the losses

4. Backpropagate

5. Go back to step 1
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What if the 
sum of 

losses is not 
a good loss?

How will 
the model 

know which 
task to do?



Parameter sharing

CSCI 699: Robot Learning - Lecture 10 17An Overview of Multi-Task Learning in Deep Neural Networks
Ruder.io



Extreme case: no parameter sharing
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Extreme case: full parameter sharing
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Multiplicative coding

CSCI 699: Robot Learning - Lecture 10 20Feature-wise transformations
Dumoulin et al., Distill 2018



Concatenation-based coding
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These are the same!



There is no right way
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Multi-task learning

Common solution:

1. Sample tasks from the task distribution 𝑃(𝜏)

2. Compute their losses

3. Sum the losses

4. Backpropagate

5. Go back to step 1
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What if the 
sum of 

losses is not 
a good loss?

How will 
the model 

know which 
task to do?



Multi-task learning

Common solution:

1. Sample tasks from the task distribution 𝑃(𝜏)

2. Compute their losses

3. Sum the losses w/ some weights

4. Backpropagate

5. Go back to step 1
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What if the 
sum of 

losses is not 
a good loss?

How will 
the model 

know which 
task to do?

Popular heuristic: try to make 
gradients have similar magnitude



Multi-task learning

Common solution:

1. Sample tasks from the task distribution 𝑃(𝜏)

2. Compute their losses

3. Take the maximum of the losses

4. Backpropagate

5. Go back to step 1
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What if the 
sum of 

losses is not 
a good loss?

How will 
the model 

know which 
task to do?



Common problems

• Negative transfer
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Left: Playing atari with deep reinforcement learning
Mnih et al., NeurIPS Deep Learning Workshop 2013
Right: Windy.com Community

You should share less 
between the tasks.

How?

• Fewer parameters

• Soft-sharing



Soft-sharing

Do not constrain the model to have the same parameters for 
different tasks.

Instead, penalize the model based on how different their 
parameters are.
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Common problems

• Overfitting

Perhaps, you have little data for some of the tasks.
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You should share more between the tasks.



Can we share based on task similarity!

Yes!

But what is task similarity?
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Today…

• Multi-task Learning: Learn multiple tasks together

• Transfer Learning: Learn multiple tasks and transfer your 
knowledge to a new one

• Meta Learning: Learn multiple tasks such that adapting to a 
new task will be easy
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Transfer learning

Training: Have access to tasks 𝜏1, 𝜏2, … , 𝜏𝑛, but not 𝜏𝑛+1.

Transfer: Have access to task 𝜏𝑛+1, but not 𝜏1, 𝜏2, … , 𝜏𝑛.
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Transfer learning

Common solution:

Training:

1. Run your favorite (multi-task) learning algorithm on 𝜏1, 𝜏2, … , 𝜏𝑛

Transfer:

2. Fine-tune the model on 𝜏𝑛+1
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This is the idea behind using ImageNet features or BERT embeddings!



Transfer learning

Common solution:

Training:

1. Run your favorite (multi-task) learning algorithm on 𝜏1, 𝜏2, … , 𝜏𝑛

Transfer:

2. Fine-tune the model on 𝜏𝑛+1
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Fine-tune 
what?



Fine-tune what?

It depends.

CSCI 699: Robot Learning - Lecture 10 35Surgical fine-tuning improves adaptation to distribution shifts
Lee et al., ICLR 2023



Fine-tune what?
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A good default:

Slide: Chelsea Finn (Stanford)
Image: Fine-Tuning can distort pretrained features 
and underperform out-of-distribution
Kumar et al., ICLR 2022



Transfer learning

What if our dataset on the target set is so small that even transfer 
learning does not help?
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Today…

• Multi-task Learning: Learn multiple tasks together

• Transfer Learning: Learn multiple tasks and transfer your 
knowledge to a new one

• Meta Learning: Learn multiple tasks such that adapting to a 
new task will be easy
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Meta-learning

CSCI 699: Robot Learning - Lecture 10 39
From: Stanford CS330



Meta-learning

Training: Have access to tasks 𝜏1, 𝜏2, … , 𝜏𝑛, but not 𝜏𝑛+1.

Transfer: Have access to task 𝜏𝑛+1, but not 𝜏1, 𝜏2, … , 𝜏𝑛.

Assumption:

𝜏𝑛+1 comes from the same task distribution as 𝜏1, 𝜏2, … , 𝜏𝑛.
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Black-box adaptation

• Design a giant neural network that takes the datasets as the 
input and outputs the parameters of a smaller network.

• The smaller network performs the task 𝜏𝑛+1.
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Yes, I really said this.

But sometimes we can get away 
with lower dimensional vectors.



Optimization-based adaptation

Learn a model such that when we take one (or some) gradient 
step in task 𝜏𝑛+1, it will perform good.

minimize
𝜃

෍

𝑖=1

𝑛

𝐿 𝜃 − 𝛼∇𝜃𝐿 𝜃, 𝜏𝑖
𝑡𝑟 , 𝜏𝑖

𝑡𝑠
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Optimization-based adaptation

1. Sample task 𝜏𝑖

2. Compute 𝜙 ← 𝜃 − ∇𝜃𝐿 𝜃, 𝜏𝑖
𝑡𝑟

3. Update 𝜃 using ∇𝜃𝐿 𝜙, 𝜏𝑖
𝑡𝑠
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From: Stanford CS330

Note we will need the second gradient!



Next time…
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