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Project milestone report

* 5% of the overall class grade (=12.5% of the project grade)
* 2 pages

* You don’t have to re-introduce the project. You can assume we
already know it, unless...

* You partially and fully changed your project after the proposal report.
* Our feedback to your proposal included some clarification questions.
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Project milestone report

* Describe the progress since the proposal report.
* Did you complete the mathematical formulation / solution? Share your work.
* Did you implement something? Share any results you may have.

* Did you read many papers? Share what you learned and how they are
related to your project.

* Describe what else remains to be done.
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Today...

* Multi-task Learning
* Transfer Learning

* Meta Learning
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What is a task?

T

. _
maximize E,, Zth(st, a,)
t=0 i

subject to s;.1 = f (s, ap, wy)
ar = m(St)

More generally in machine learning, a
dataset-loss function pair defines a task.
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What’s wrong with single-task learning?
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What’s wrong with single-task learning?
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Still... Why multi-task learning?

We could just learn each task independently!
« What if we have little data for some tasks?

« What if we have little time to learn some tasks?

CSCI 699: Robot Learning - Lecture 10 8



Still... Why multi-task learning?

You should learn each task independently if there is no shared
structure between the tasks.
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Left: Playing atari with deep reinforcement learning
Mnih et al., NeurIPS Deep Learning Workshop 2013 CSCI 699: Robot Learning - Lecture 10 9
Right: Windy.com Community



Still... Why multi-task learning?

In real life, many tasks share structure!

From: Stanford CS330 CSCI 699: Robot Learning - Lecture 10 10



Today...

* Multi-task Learning
* Transfer Learning

* Meta Learning

CSCI 699: Robot Learning - Lecture 10 11



Today...

* Multi-task Learning: Learn multiple tasks together
* Transfer Learning

* Meta Learning
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Today...

* Multi-task Learning: Learn multiple tasks together
* Transfer Learning: Learn multiple tasks and transfer your

knowledge to a new one

* Meta Learning
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Today...

* Multi-task Learning: Learn multiple tasks together

* Transfer Learning: Learn multiple tasks and transfer your
knowledge to a new one

* Meta Learning: Learn multiple tasks such that adapting to a
new task will be easy
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Today...

* Multi-task Learning: Learn multiple tasks together
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Multi-task learning

Common solution:

1. Sample tasks from the task distribution P(7)

2. Compute their losses

3. Sum the losses " How will \ ( What if the )

4. Backpropagate the model sum of

5. Go back to step 1 know which losses is not
\ task todo? | |\ agood loss?,
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Parameter sharing

Task Al [Task B| [Task C| Task-
1 1 f specific
layers

Shared
: layers
An Overview of Multi-Task Learning in Deep Neural Networks CSCI 699: Robot Learning - Lecture 10 17
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From: Stanford CS330
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Extreme case: no parameter sharing
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Extreme case: full parameter sharing

64 filters
7%7 conv \ % 32 filters .
X stride 2 4, 9x4 conv
ReLU RelLU

Concatenate z; with input and/or activations

From: Stanford CS330 CSCI 699: Robot Learning - Lecture 10 19



Multiplicative coding

Conditional scaling first maps the

conditioning @ conditioning representation to a
representation = > scaling vector,
I'he scaling vector is then multiplieg
v with the input
input : 3 @ ¥ output
Feature-wise transformations CSCI 699: Robot Learning - Lecture 10 20
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Concatenation-based coding

Concatenation-based conditioning

conditioning . . . R
4 simply concatenales the conditioning Conditional biasing first maps

representation conditioning the conditioning represantation

) . -
repr : - g ————
Z l presentation to the input representation — E to a bias vector.
) ~— Theresult is passed ZI
" through a linear layer
] N to produce the autput.
T @ —
input s > — i ' o output ‘ The blas vector |5 then
Ly =
= v added to the input
= =
L rput - [ * @ = output
|

These are the same!
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There is no right way

From: Stanford CS330
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Deep Relation Networks. Long, Wang ‘15
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[
TTT11 v
"
Input Process  x 1 DII_{ '|T| _'HE %
array ™ NN Process _xL | - -
K 1Y ok v = = - e
! LJ I Attention
! Vo sgores
i - — R
tocene g 0 2| mmmi |9 f [ mmm K
o VEE L TEmT L TEm T O
I = |
E
Output I . S ! q
ey o EEE I
o beode | )|

Perceiver |O. Jaegle et al.”21
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Multi-task learning

Common solution:

1. Sample tasks from the task distribution P(7)

2. Compute their losses

3. Sum the losses " How will \ ( What if the )
4. Backpropagate the model sum of

5. Go back to step 1 know which losses is not

 task to dO?U @ good loss?,
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Multi-task learning

Common solution:

Compute their losses

Sum the losses w/ some weights
Backpropagate

Go back to step 1

Al

Popular heuristic: try to make
gradients have similar magnitude

Sample tasks from the task distribution P(7)

4 How will A
the model
know which

\task to do? U
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Multi-task learning

Common solution:

1. Sample tasks from the task distribution P(7)

2. Compute their losses

3. Take the maximum of thelosses (" 115 will )\ ( What if the
4. Backpropagate the model sum of

5. Go back to step 1 know which losses is not

 task to dO?U \ @ good loss?‘b
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Common problems

* Negative transfer

.
v Wini
s

0, bl § You should share less
=Y between the tasks.
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How?
* Fewer parameters
* Soft-sharing

Left: Playing atari with deep reinforcement learning
Mnih et al., NeurIPS Deep Learning Workshop 2013 CSCI 699: Robot Learning - Lecture 10 26
Right: Windy.com Community



Soft-sharing

Do not constrain the model to have the same parameters for
different tasks.

Instead, penalize the model based on how different their
parameters are.
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Common problems

* Overfitting
Perhaps, you have little data for some of the tasks.

You should share more between the tasks.
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Can we share based on task similarity!

Yes!

But what is task similarity?
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Today...

* Transfer Learning: Learn multiple tasks and transfer your
knowledge to a new one
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Transfer learning

Training: Have access to tasks 74, 75, ..., T, but not 7,,, 1.

Transfer: Have access to task 7,,,1, but not 74, 75, ..., 7,,.
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Transfer learning

Common solution:

Training:

1. Run your favorite (multi-task) learning algorithm on 74, 75, ..., T,
Transfer:

2. Fine-tune the model on 1,44

This is the idea behind using ImageNet features or BERT embeddings!
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Transfer learning

Common solution:

Training:

1. Run your favorite (multi-task) learning algorithm on 74, 75, ..., T,
Transfer:

2. Fine-tune the model on 1,44

Fine-tune
what?
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Fine-tune what?

It depends.

Input-Level Shift: CIFAR-C Feature-Level Shift: Entity-30 Output-Level Shift: CelebA

Image corruption

Source data '

Full Fine-Tuning 79.9%
Surgical Fine-Tuning 82.8% (+2.9)

-
&-HHHH

First block

Surgical fine-tuning improves adaptation to distribution shifts
Lee et al., ICLR 2023

Subgroup shift

F.4I0

79.3%
81.2% (+2.1)

P
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Middle/later block
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Fine-tune what?

A good default:

Randomly O Backprop nitialize O Backprop
initialized

50 Lo (o'e

Frozen Features

OO0 OO0

Slide: Chelsea Finn (Stanford)

Image: Fine-Tuning can distort pretrained features

and underperform out-of-distribution CSCI 699: Robot Learning - Lecture 10 36
Kumar et al., ICLR 2022



Transfer learning

What if our dataset on the target set is so small that even transfer
learning does not help?
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Today...

* Meta Learning: Learn multiple tasks such that adapting to a
new task will be easy
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Meta-learning

meta-training

training

classes

meta-testing

From: Stanford CS330

7;est

training data D; .in test set Xtest
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Meta-learning

Training: Have access to tasks 74, 75, ..., T, but not 7,,, 1.

Transfer: Have access to task 7,,,1, but not 74, 75, ..., 7,,.

Assumption:
Tn4+1 comes from the same task distribution as 74, 75, ..., Ty,.
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Black-box adaptation

* Design a giant neural network that takes the datasets as the
input and outputs the parameters of a smaller network.

~~

Yes, I really said this.

But sometimes we can get away
with lower dimensional vectors.

* The smaller network performs the task 7,,,.
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Optimization-based adaptation

Learn a model such that when we take one (or some) gradient
step in task 7,4, it will perform good.

n
mini@mizez L(H — anL(Q;Tfr):TfS)
i=1
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Optimization-based adaptation

1. Sample task T;
2. Compute ¢ « 0 — VgL(0,7}")
3. Update 6 using VyL(¢, ) —

Note we will need the second gradient!

From: Stanford CS330 CSCI 699: Robot Learning - Lecture 10 43



Next time...

Week 11

(e arr 72 Prof. Heather Culbertson TBD
Fri, Nov 8 ey 778 Dr. Aaquib Tabrez Multimodal Explanation-based Reward Coaching and Decision Support to Improve

Human-Robot Teaming

CSCI 699: Robot Learning - Lecture 10 A4
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