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Remember...

maximize E, z Y R (s, ap)d

T \
t=0 i

_ Where does this
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Inverse reinforcement learning (IRL)

# Kalman, 1964: Inverse optimal control for 1D problems
Boyd et al., 1994: Linear matrix inequality (LMI) for LQ setting

Ng, Russel, 2000: First MDP formulation and reward ambiguity

Abbeel, Ng, 2004: Apprenticeship learning (feature matching)
Ratlitf et al., 2006: Max margin planning (MMP)
Ziebart et al., 2008: Max-Ent IRL

From: Stanford CS237B CSCI 699: Robot Learning - Lecture 5 3



Remember...

. _
maximize E,, Zth(st, a,)
t=0 i

T

subject to sy = f(s¢, a, wy)
A = Tt(S \
t ( t) Where does this
come from?

Some methods require full knowledge of f whereas
some require only ability to execute/simulate it.
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Why do we need simulations?

* Robots are expensive.

* Robots break and degrade all the time.
... and they will likely break more if you try to train things on them.

 Robots are slow.

* Labeling real world is difficult.
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The premise of robot learning

Designing controllers for robots is difficult and does not scale
well. Instead, we will collect a lot of experience and let the
algorithm handle the rest.
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Collecting a lot of experience
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We do not have large datasets in robotics
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Data collection is more expensive and safety-critical when humans are involved
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Balancing Efficiency and Comfort in Robot-Assisted Bite Transfer '
Belkhale et al., ICRA 2022 ‘




Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience

Chebotar et al., ICRA 2019



This lecture is based on:

“Randomization and the reality gap: how to transfer robotic
policies from sim to real” by Josh Tobin:

https://youtu.be/ac WIIgKX2c
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https://youtu.be/ac_W9IgKX2c

Simulated data

* Cheap

* Fast
 Scalable
 Safe
 Labeled

* Not beholden to real-world probability distributions
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Labels (and rewards) are free

Left: Recognizing Objects In-the-wild: Where Do We Stand?
Loghmani et al., ICRA 2017 CSCI 699: Robot Learning - Lecture 9 13
Right: From Caroline Lasorsa (Superb AI)



Not beholden to real—worl distributions

From: 7NEWS Adelaide CSCI 699: Robot Learning - Lecture 9 14



| windQT\l's-"i\/jagic Roundabout from the air
 Mark Winter, 2016
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Not beholden to real-world distributions
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Scalable End-to-End Autonomous Vehicle Testing via
Rare-event Simulation
O’Kelly et al., NeurIPS 2018
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Sim-to-real problem

There is a real danger (in fact, a near certainty) that programs which
work well on simulated robots will completely fail on real robots because
of the differences in real world sensing and actuation — it is very hard to
simulate the actual dynamics of the real world.

Artificial Life and Real Robots
Rodney Brooks, 1992
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Today

* Difficulty of using simulated data

* Using simulation data without solving sim-to-real
* Building simulations

* Domain adaptation

e Domain randomization
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Ditticulty of using simulated data

Physics simulators make big assumptions to run faster
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Convex objects Discrete time

Left: Nilson Souto CSCI 699: Robot Learning - Lecture 9 20




Ditticulty of using simulated data

Physics simulators make big assumptions to run faster
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________________________________________________________
Ditticulty of using simulated data
Physics simulators make big assumptions to run faster

What is the friction coefficient?

How about other parameters?
Inertia? Damping? Spring constants?

mq

More accurate model = More parameters to learn = More data needed

Left: Stephane Caron (Inria Paris) CSCI 699: Robot Learning - Lecture 9 22



Ditticulty of using simulated data

Photorealistic simulation is expensive.

A Guide to Lidar Wavelengths for Autonomous

Vehicles and Driver Assistance CSCI 699: Robot Learning - Lecture 9 23
Velodyne, 2018



Ditticulty of using simulated data

Remember...
Similar problem in sim-to-real:

Small modeling errors cause
large control errors.

From: Cornell C54789 CSCI 699: Robot Learning - Lecture 9 24



Ditticulty of using simulated data

Neural nets will exploit/overfit to differences in data distributions

Multi-object tracking accuracy:
Sim: 63.7%
Real: 78.1%

Virtual Worlds as Proxy for Multi-Object Tracking Analysis

: ing - -
Gaidon et al, CVPR 2016 CSCI 699: Robot Learning - Lecture 9 5



Today

* Using simulation data without solving sim-to-real
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Sim data without solving sim-to-real

Prototyping Algorithms Debugging
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Verify/compare algorithms in simulation Replace the robot with a simulator to
debug the full stack

Left: OpenAI Gym

Brockman et al., 2016

Right: Robotic Arm Simulation with ROS and Gazebo CSCI 699: Robot Learning - Lecture 9 27
Dineshkumar (Skyfi Labs)



Sim data without solving sim-to-real

Prototyping Systems Testing

Choose the robot / verify its ability Test the performance in edge cases, etc.
Waymo: 1000x testing in simulation than real-world (2017)

Left: Siemens Tecnomatix
Right: Inside Waymo's Secret World for Training Self-Driving Cars ~ CSCI 699: Robot Learning - Lecture 9 28
Madrigal, The Atlantic (2017)



Today

* Building simulations

CSCI 699: Robot Learning - Lecture 9 29



Building simulations

1. Design simulation model
* This is where we implement physics.
* In practice, we pick an existing model, e.g., MuJoCo, PyBullet, Gazebo.

2. Create scenarios
* We create 3D models, or get them: ShapeNet, YCB, Dex-Net, Unity, ...
* We then create a scenario (e.g., decide where to place the objects)

[ 3. Collect data and potentially improve simulation ]/' This is “System ID”
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Building simulations

1. Design simulation model
* This is where we implement physics.
* In practice, we pick an existing model, e.g., MuJoCo, PyBullet, Gazebo.

2. Create scenarios
* We create 3D models, or get them: ShapeNet, YCB, Dex-Net, Unity, ...
* We then create a scenario (e.g., decide where to place the objects)

3. Collect data and potentially improve simulation
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Today

* Domain adaptation
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Supervised domain adaptation

Think of each simulation as a
new task and train a
progressive neural network.

outputy outputs outputs
[ a |8 a

Progressive neural networks ‘ .
Rusu et al., 2016 CSCI 699: Robot Learning - Lecture 9 34



Supervised domain adaptation

Learn inverse dynamics over a set of simulations.

St — 7 Inverse

s,..— Dynamics
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Supervised domain adaptation

Train in simulation to find a submanifold of the policy space or
learn a Bayesian prior that may perform well in the real world.
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Hopefully
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the real world
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Weakly supervised domain adaptation

Use weak supervision to learn

policies that are robust to I D ----- [ =

distribution shift. ko —
pairs loss

Task loss: our actual objective I D """ [ o

Confusion loss: objective for classifying sim vs. real

Pairwise loss: objective for aligning states/frames nJﬁSéEnned - : SR

lllll 1aSk
loss

pose regression convnet
(shared weights)

Adapting Deep Visuomotor Representations

with Weak Pairwise Constraints CSCI 699: Robot Learning - Lecture 9 37
Tzeng et al., WAFR 2020



Self-supervised domain adaptation

Use a model trained on simulation to label real world data.
Bootstrapping with such self-supervised labels helps adaptation.

A Self-supervised Learning System for Object Detection
using Physics Simulation and Multi-view Pose Estimation CSCI 699: Robot Learning - Lecture 9 38
Mitash et al., IROS 2017



Unsupervised domain adaptation

Train a GAN to convert labeled simulation data into realistic data.

" real/fake \ ‘ y \

(b) Synthetic Images

(a) Synthetic Images Adapted with our Approach

(c) Real Images

Using simulation and domain adaptation to
improve efficiency of deep robotic grasping CSCI 699: Robot Learning - Lecture 9 39
Bousmalis et al., ICRA 2018



Today

e Domain randomization

CSCI 699: Robot Learning - Lecture 9 40



Domain randomization

Idea: Increase the diversity in simulation domains so that the real
world may look like another simulator.

This idea goes back to 1997:
* randomize the important aspects a bit for robustness
 randomize the other aspects so that the controller will ignore them

Evolutionary Robotics and the Radical

Envelope-of-Noise Hypothesis CSCI 699: Robot Learning - Lecture 9 41
Jakobi, Adaptive Behavior 1997



Domain randomization

CAD-?RL for quadcopter collision avoidance
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CAD?RL: Real Single-Image Flight Without a Single Real Image

Sadeghi and Levine, RSS 2017 CSCI 699: Robot Learning - Lecture 9 42



Domain randomization

Simulators do not even need
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Applications of domain randomization

* Pose estimation

* Object detection

* Localization and tracking
* Visuomotor control

* Manipulation

CSCI 699: Robot Learning - Lecture 9 44



Domain randomization for dynamics

What if the mismatch between the simulation and the real world
is due to dynamics?

Parameter Range

Link Mass [0.25, 4] x default mass of each link
Joint Damping 0.2, 20] x default damping of each joint
Puck Mass 10.1,0.4]kg

Puck Friction 0.1, 5]

Puck Damping [0.01,0.2]|Ns/m

Table Height 10.73,0.77]m

Controller Gains (0.5, 2] x default gains

Action Timestep A (125, 1000]s 1

Will a feedforward neural network policy work?

Sim-to-real transfer of robotic control with dynamics randomization

Peng et al,, ICRA 2018 CSCI 699: Robot Learning - Lecture 9 45



Dexterity with domain randomization

A Distributed workers collect B We train a control policy using reinforcement learning.
experience on randomized It chooses the next action based on fingertip positions
environments at large scale. N and the object pose.

® B

Observed -
Robot States Actions

C We train a convolutional neural network to predict the
object pose given three simulated camera images.

®

Object Pose

D We combine the pose estimation network
and the control policy to transfer to the real world.
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Learning dexterous in-hand manipulation

99- arnine - cture ©
OpenAl /R 2020 CSCI 699: Robot Learning - Lecture 9




Why does domain randomization work?

* Training is done over a distribution of domains that contain the
real world.

* Domain randomization helps the model identify what to ignore.

* Domain randomization is meta learning.

CSCI 699: Robot Learning - Lecture 9 47



Domain randomization recipe

Build a simulator

Calibrate it to the environment
Design randomizations

Train a model

Evaluate the model in real-world
Examine failures

N SR

If unhappy, go to step 3

CSCI 699: Robot Learning - Lecture 9 48



Next time...

Week 10 '8 Meta & Multi-task learning m Homework #3
Fri, Nov 1 27l Meta & Multi-task learning e Chan et al., Human Irrationality: Both Bad and Good for Reward Inference (2021).

Julian et al., Never Stop Learning: 'The Effectiveness of Fine-Tuning in Robotic
Reinforcement Learning (2020).

Kim et al., Bayesian Model-Agnostic Meta-Learning (2018).

Zintgraf et al., VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via
Meta-Learning (2020).

Sodhani et al., Multi-Task Reinforcement Learning with Context-based
Representations (2021).

e Shridhar et al., Perceiver-Actor: A Multi-Task Transformer for Robotic Manipulation
(2022).
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