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Office hours

* Erdem:
* Friday, 9:00am — 10:00am, GCS SB3 (Floor: LL2)
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Online resources

* Course website: https://liralab.usc.edu/csci699/

* Piazza: https://piazza.com/usc/fall2025/csci699specialtopics

* Gradescope: https://www.gradescope.com/courses/1073531
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What is a robot?

* An embodied artificial intelligence
* A machine that can autonomously carry out useful work

 An artificial device that can sense its environment and
purposefully act on or in that environment

Robotics: A Very Short Introduction

Winfield, 2012 CSCI 699: Robot Learning - Lecture 1 5



See-think-act cycle

Autonomous Mobile Robots
Siegwart et al.

knowledge,
data base

“position”

global map

environment model

local map
|

Information
Extraction

0

raw data

c
9
-—

Q.

]

(&

—

O
o

Sensing

Real World

Environment

CSCI 699: Robot Learning - Lecture 1

path

y

mission
commands

L

Path

Execution
|
actuator

commands

Motion Control




Robot learning

Autonomous Mobile Robots
Siegwart et al.

knowledge,
data base

“position*

global map

environment model

local map
|

Information
Extraction

0

raw data

c
9
-—

Q.

]

(&

—

O
o

Sensing

Real World

Environment

CSCI 699: Robot Learning - Lecture 1

path

y

mission
commands

L

Path

Execution
|
actuator

commands

Motion Control




Why robot learning?

Designing controllers is hard
* Requires good understanding of the system
* Doesn’t scale well to high-dimensional systems

* “Manipulation breaks all the rigorous/reliable approaches I know for control.”
— Russ Tedrake (MIT / TRI)

From: Josh Tobin CSCI 699: Robot Learning - Lecture 1 8



Prerequisites

* Probability theory

* Calculus

* Linear algebra

* At least one programming language (preferably, Python)

* Programming assignments will be in Python.

* Recommended:
« Familiarity with basic concepts in machine learning
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What's covered?

* Basics of... * Learning from human feedback

* Robotics e Sim-to-real transfer
* Machine learning

* Computer vision Meta—learmng

» Representation learning * Sate and robust learning

* Reinforcement learning * Multi-agent learning

* Robot learning using natural

* Imitation learning / IRL
language
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What's NOT covered?

Autonomous Mobile Robots
Siegwart et al.
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What's NOT covered?

* Robot operating system (ROS)
« CSCI 545: Robotics

* Simultaneous localization and mapping (SLAM)
« CSCI 545: Robotics

* Grasping and manipulation
* CSCI 699: Deep Learning for Robotic Manipulation

* Haptics
« CSCI 649: Haptic Interfaces and Virtual Environments
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Textbook & Readings

* No textbook is required.
* All readings will be available on course website.

o If I were to recommend textbooks for this class...

* Reinforcement Learning: An Introduction by Sutton and Barto

* Modern Adaptive Control and Reinforcement Learning (MACRL) by
Bagnell, Boots, and Choudhury

* Principles of Robot Autonomy by Lorenzetti and Pavone
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Assignments

* One class project (40%)
* One homework assignment (20%)
* Four paper presentations (4 x 10%)
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Homework assignments

* Three homework assignments in total — you choose which one
you would like to do!

* Basics of robotics & machine learning & computer vision
* Reinforcement learning
 Imitation learning & intent inference & shared autonomy

* Both theoretical and programming components

* Programming parts will be in Python

* No ROS knowledge required

* The submissions will be online, due at 12 midnight.
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Homework assignments

* The class does not have a TA or a grader.
* They told me to be creative about how to handle grading.

* After every deadline, I will share the solution key with you.
* Everyone grades themselves in two weeks.

*  randomly pick n submissions and grade them myself.

* If I realize the student cheated by increasing their score by x, I give a
penalty of kx/n points where k is the number of students who
submitted the homework.

* [ repeat until I find n fairly graded assignments.
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Class presentation

* 15-25 minutes presentation, depending on the week/paper

* Should include an extensive discussion of the paper
* Motivation
* Prior work
* Methods
* Results

* Discussion
* Both the positive and the negative aspects of the paper!

* 5 minutes Q&A
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Course project

* The project will be done in groups of 2 or 3.

* Feel free to reach out to me if you have a good reason to do it
individually or as a group of more than 3 students.
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Course project

The project must have both robotics and machine learning
components.

Examples:

* Application-dependent improvements over an existing robot
learning method

* Anew application of an existing robot learning technique
* Anovel method that may have potential benefits
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Course project

Component Contribution to Grade

Project Proposal Report 5% October 19th
Project Milestone Report 5% November 16t
Project Presentation (Possibly with Demo) 10% December 5th
Final Project Report 15% December 7th
Peer Review 5% December 14th
Total 40%
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Today...

e Basics of robotics
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A rigid body in 2D space

r

’__——_—’

—

This rigid body is free to move
and rotate in any direction.

SN —

How many variables do we need
to fully describe the configuration
of this rigid body?
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A rigid body in 2D space

— —

r

This rigid body is free to move
and rotate in any direction.

o
=
—_——J

How many variables do we need
to fully describe the configuration
of this rigid body?

The answer is 3 variables: (x, y, 6)

’__—'—_—-—
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A rigid body in 2D space

r
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What if one of the end points is
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A rigid body in 2D space

r

—

SN —
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What if one of the end points is
fixed?

Two of the variables are now fixed
by two constraints:

<l R

X
y
We only need one variable: 6

This is called the degree-of-freedom
(DoF) of the body.

25



-____________________________________________________________________
A rigid body in 3D space

* Requires 6 degrees of freedom:
* Three for position
 Three for orientation
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Common joints

Revolute joint Prismatic joint Helical joint Planar joint

Cylindrical joint Spherical joint Universal joint

Kinematic Design (Engineering Haptic Devices)

Andreas Rose CSCI 699: Robot Learning - Lecture 1 27



Degrees of freedom of a robot

Left: https://en.wikipedia.org/wiki/Stewart platform
Right: From Flavio Firmani, University of Virginia
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Grubler’s formula

] = # of joints m =

N = # of bodies (including ground) 3, if planar
6, if spatial
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Grubler’s formula

] = # of joints m =

N = # of bodies (including ground) 3, if planar
6, if spatial

e

dof=m(N—1) — ) ¢

=1
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Grubler’s formula

N = # of bodies (including ground) {3, if planar
m =

J = # of joints 6, if spatial

Number of independent

dof = m(N — 1) — C; — joint constraints

e

=1
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Grubler’s formula

] = # of joints m =

N = # of bodies (including ground) 3, if planar
6, if spatial

e

dof=m(N—1) — ) ¢

=1

J
=m(N-1) = ) (m—f)
=1
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Grubler’s formula

J = # of joints m=

N = # of bodies (including ground) 3, if planar
6, if spatial

e

dof=m(N—1) — C;

=1

J J
=m(N—1)—2(m—fi)=m(N—1—D+zfi
i=1 1=1
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Grubler’s formula

] = # of joints m =

N = # of bodies (including ground) 3, if planar
6, if spatial

J
dof=m(N—1—])+Zfi
=1
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An open-chain robot arm

Controlling Assistive Robots with Learned Latent Actions

Dylan Losey et al., ICRA 2020 CSCI 699: Robot Learning - Lecture 1 35



An open-chain robot arm

Controlling Assistive Robots with Learned Latent Actions

Dylan Losey et al., ICRA 2020 CSCI 699: Robot Learning - Lecture 1 36



Four-bar closed-chain mechanism

From Rupesh Dewangan, GrabCAD CSCI 699: Robot Learning - Lecture 1 37



Stewart platform

Left: https://en.wikipedia.org/wiki/Stewart platform
Right: From Flavio Firmani, University of Virginia
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Acrobot

From: Gymnasium, Farama Foundation

Generalization in Reinforcement Learning: Successful Examples

Using Sparse Coarse Coding CSCI 699: Robot Learning - Lecture 1 40
Richard S. Sutton, NeurIPS 1995



Acrobot
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From: Gymnasium, Farama Foundation
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Acrobot
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The entire 2D plane |
is the task space |
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From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples
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Acrobot

r — _ -
: The robot’s current configuration is:
I (01' 02) €EC
\
This is called the

configuration space

\
l
I
I
\
I
l

From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples
Using Sparse Coarse Coding CSCI 699: Robot Learning - Lecture 1 4+
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e
Acrobot

The robot’s current configuration is:

(6,,6,) €C

SN —

Forward kinematics: FK: C - W
FK((Bl, 82)) = (x, y)

\
l
I
I
\
I
l

From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples
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e
Acrobot

The robot’s current configuration is:

(6,,6,) €C

SN —

Forward kinematics: FK: C - W
FK((Bl, 82)) = (x, y)

Inverse kinematics: IK: W - €
IK((x,y)) = (61,65)
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From: Gymnasium, Farama Foundation
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e
Acrobot

The robot’s current configuration is:

(6,,6,) €C

SN —

Forward kinematics: FK: C - W
FK((Bl, 82)) = (x, y)

Inverse kinematics: IK: W - €
IK((x,y)) = (61,65)

This is often not a proper function.
Because many configurations may
— = lead to the same end-effector pose.

\
l
I
I
\
I
l

From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples
Using Sparse Coarse Coding CSCI 699: Robot Learning - Lecture 1 47

Richard S. Sutton, NeurIPS 1995



Okay, but why?

Initial

From: Nikolay Atanasov, UC San Diego
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Okay, but why?

Initial

From: Nikolay Atanasov, UC San Diego CSCI 699: Robot Learning - Lecture 1 49



Okay, but why?

Initial

Initial

I ‘ « Goal
Goal
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Okay, but why?
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Okay, but why?

Initial

‘ Initial

I
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Okay, but why?

GoaL(
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Today...

* Fundamentals of machine learning
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Machine learning

Supervised learning Unsupervised learning

Given {(xi, yi)}?zl, find a function

fx) =y
data point value
predictor label

(classification, regression)
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Machine learning

Supervised learning Unsupervised learning
o : A L
Given {(xl, yl)}:l:l, find a function Given {x }i= y find patterns
fx)=y
data point value
predictor label

(clustering, compression,

(classification, regression) dimensionality reduction)
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Supervised learning

Classification Regression

Gaussian Process Classification Model in various PPLs, Arthur Lui CSCI 699: Robot Learning - Lecture 1 57
Gaussian Process Regression From First Principles, Ryan Sander



Learning models

e Parametric models:

y = fo(x)

Examples: naive Bayes, logistic regression, neural networks
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Learning models

e Parametric models:

y = fo(x)

Examples: naive Bayes, logistic regression, neural networks

dataset

* Non-parametric models: 7
y = f(x;D)

Examples: K-nearest neighbors, Gaussian process regression
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[L.oss functions

A loss function evaluates the quality of fitin f(x) = y or the
quality of patterns in an unsupervised learning problem.

Examples:
£? loss: L(B) = Z(xi,yi)ED(y" — fo (xi))z

Cross-entropy loss: L(O) = — Z(xi,yi)eD(yi)T log fo (xl)

CSCI 699: Robot Learning - Lecture 1 60



R R R R R R R R,
Minimizing the loss

* Analytical solution
» Use exact methods to find 8 = arg mgn L(60)

* Occasionally possible, e.g., linear regression

* Numerical optimization
* Numerically minimize L(8), e.g., gradient descent by computing VL(8)
* Much more common in robot learning research
* Stochastic optimization is often necessary for efficiency
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This is not the first model taught in a machine learning
Neural netWO I'kS — class. But we will almost never use other models.
1. A perceptron

X1 Wq
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Neural networks

2. Asingle layer neural network

=iy

yi = g(wix' + by)

[ I

yi=g(wix'+b,) mmmp y=gW'x +b)

[ I

ys = g(ws x' + bs)
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Neural networks

3. A deep neural network

CSCI 699: Robot Learning - Lecture 1 64



Backpropagation

From: Marco Pavone, Stanford University CSCI 699: Robot Learning - Lecture 1 65



Backpropagation

From: Marco Pavone, Stanford University CSCI 699: Robot Learning - Lecture 1 66



Backpropagation

From: Marco Pavone, Stanford University CSCI 699: Robot Learning - Lecture 1 67



Activation functions

g should not be a linear function.

Sigmoid i Leaky RelLU
" max(0.1z, z)
l14e—*

tanh
tanh(x)

Maxout =
max(w{ x + by, wa x + by)

ReLU | ELU
max (0, z) {1( ’ z > 8
: 3 ale® — 2 < ;

Analysis Of Optimizing Neural Networks And Artificial Intelligent
Models For Guidance, Control, And Navigation Systems CSCI 699: Robot Learning - Lecture 1
Rahul Jayawardana, Thusitha Sameera Bandaranayake
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Recurrent neural networks (RNN)
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Recurrent neural networks (RNN)

One-to-many

f f !
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Recurrent neural networks (RNN)

Many-to-many
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Recurrent neural networks (RNN)

Many-to-many

) 1 r
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Deep RNNs
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Bidirectional RNNs

From: Stanford CS 230
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LLSTMs and GRUs

LSTM GRU

forget gate cell state reset gate

v

B L
e oo o omo-
== =m=mme==-

&
A3

input gate output gate update gate
sigmoid tanh pointwise pointwise vector
multiplication addition concatenation

From: Michael Phi CSCI 699: Robot Learning - Lecture 1 75



Transformers

Attention is all you need
Vaswani et al., NeurIPS 2017

Output
Probabilities
t
| Softmax |
t
L Linear |}
(¢ )
| Add & Norm Je=~
Feed
Forward
r 1 B | Add & Norm J<~
—(Add &_Norm ) Multi-Head
Feed Attention
Forward PN ) Nx
A
Nix L Add & Norm e~
~—>| Add & Norm ] Wacked
Multi-Head Multi-Head
Attention Attention
O ) O, S
O J \_ —_—
Positional Positional
Eneod & ¢ |
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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Today...

 General course information
e Basics of robotics

* Fundamentals of machine learning
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Unti]l next week...

Homework assignments will include programming with a
machine learning library: Py Torch.

There are many online PyTorch tutorials. For what we covered
today, check out:

* https://pytorch.org/tutorials/beginner/blitz/tensor tutorial.html

* https://pytorch.org/tutorials/beginner/blitz/autograd tutorial.html
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Next time...

* Basics of computer vision for robotics

* Representation learning
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