Robot Learning

Reinforcement learning

=2 USC University of .
Southern Cali%/ornia [' LlI’ d

So far...

Initial

Universal joint
’ /
g T
Initial
7/
4
’
s
L7

'
¢ Goal

b/ ’

L]

Y

CSCI 699: Robot Learning - Lecture 3 4

So far...

\ '~
\ \\ // // Class probability map
\ ~ -
\ // \\\\ //// \\ //
\ N 7N \ /
)\ /< >\ /
\
/\ / NI/ /0
// \\ //// \\\\ // \
~ ~
/ \
// \\ \
1.7 e

CSCI 699: Robot Learning - Lecture 3 5

Robot learning

We are here today

knowledge, mission
data base commands
“position* /
global map
environment model
path
local map I
I
Information Path .
- Extraction Execution 2
O A I o]
% raw data actuator O
O commands c
® S
o 5
Sensing =
Real World
Environment
Autonomous Mobile Robots CSCI 699: Robot Learning - Lecture 2 6

Siegwart et al.

Today...

* Dynamic programming in deterministic systems
* Dynamic programming in stochastic systems

* Markov decision processes

* Value/policy iteration

CSCI 699: Robot Learning - Lecture 3 7

Decision making in deterministic systems

State: s; ES
Action: a; € A(sg)
Transition: s;.1; = f; (S, a;)

CSCI 699: Robot Learning - Lecture 3 8

Decision making in deterministic systems

State: s; ES
Action: a; € A(sg)

Traditionally, it is cost, not reward. In general, different

Transition: S fr1 = f ¢ (S £ a t) communities use different notation and conventions.
Total reward: /
T—-1
J (503 @0, oy @r-1) = Tr(sp) +) 1i(s0,00)
W t=0),

¥

Finite horizon

CSCI 699: Robot Learning - Lecture 3 9

Decision making in deterministic systems

State: s; ES
Action: a; € A(s;)
Transition: s;.1; = f; (S, a;)

Total reward:
T—1

J (503 @0, v, @r1) = Tr(sr) +) Tilse,a0)
t=0
Decision making problem:

“(sn) = max SalAq, eee, A
] (O) atEc/l(St),t=O,1,...,T—1](0, 0> y 1T 1)

CSCI 699: Robot Learning - Lecture 3 10

Decision making in deterministic systems

State: St € S Discrete-time assumption
Action: a, € A(s;) /
.. Additive rewards assumption
Transition: s;.1; = f; (S, a;)
Total reward: . /
-1

J (503 @0, v, @r1) = Tr(sr) +) Tilse,a0)
t=0
Decision making problem:

“(sn) = max SalAq, eee, A
] (O) atEc/l(St),t=O,1,...,T—1](0, 0> y 1T 1)

CSCI 699: Robot Learning - Lecture 3 11

Principle of optimality

It’s the key concept behind the dynamic programming approach.

Suppose A — B — (C is the optimal B
path from A to C. \]BC
First segment reward: J4p A /] AR C

Second segment reward: /g
Optimal reward J4. = Jap + Jac

CSCI 699: Robot Learning - Lecture 3 12

Principle of optimality

If A- B - C is the optimal path from A to C, then B - C is the

optimal path from B to C. 5

IBc

A /]AB C

CSCI 699: Robot Learning - Lecture 3 13

Principle of optimality

If A- B - C is the optimal path from A to C, then B - C is the
optimal path from B to C.

B
Proof: Suppose B — D - C is the \]BC
optimal path from B to C. Then, s
Jep +Jpc > IBc y g C
and) D]
Jap +/ep Y Jpc > Jas +Jsc = Jac bc

This is a contradiction.

CSCI 699: Robot Learning - Lecture 3 14

Principle of optimality (deterministic)

Suppose (ay, aj, ---, ar_41) is an optimal solution to the decision
making problem for an initial state s, and the systems evolves as
(Sg, S1, ---» ST) for this initial state and action sequence.

Then, an optimal solution to the subproblem for moving from
state s; at time t until time T is (af, a;;q, ..., A7_1).

Tail of an optimal solution = Optimal for the tail subproblem

CSCI 699: Robot Learning - Lecture 3 15

How to apply principal of optimality

Goal: Gofrom Ato E. B B

Given: B — E, C — E and D — E are the optimal , 70

paths to E from B, C and D, respectively. 4 ’\ c c \
. L /TS N E

Principle of optimality: \

If A — B is the initial segment of the optimal RS . D D)

path from A to E, then B — E is the final ~

segment of this path. ,
Jape = Jap tJBE

Then, we find the optimal path by comparing: Jace = Jac +Jck
Jape =Jap +JpE

CSCI 699: Robot Learning - Lecture 3 16

How to apply principal of optimality

Start from the terminal state and go backward in time. b
— oy
First, compute the optimal paths to E from all possible c \
previous states. The rewards of these paths are reward-to-go =~ Q‘ E
(sometimes called return) from those states. I
D _7

Repeat this procedure backward in time until t = 0. -

“Life can only be understood backwards;
- but it must be lived forwards.”
N - Seoren Kierkegaard

CSCI 699: Robot Learning - Lecture 3 17

-__
Dynamic programming (deterministic)

];:(ST) — TT(ST), fOI‘ all ST ES
fort =T —-1to0do

Ji(s;) = max 1:(sgap) +Ji1(fi (54, ap)), forall s, € 8
atEcA(St)

return J5(),J2 (), o, J3 ()
ro(A L) =2

—P r;(H) =1

CSCI 699: Robot Learning - Lecture 3 18

-__
Dynamic programming (deterministic)

];:(ST) — TT(ST), fOI‘ all ST ES
fort =T —-1to0do

Ji(s;) = max 1:(sgap) +Ji1(fi (54, ap)), forall s, € 8
atEcA(St)

return /i (-), /1 (-),J7 ()

J3(G) =3
ro(A, L) =2 —p r,(H) =1
J3(H) =1

CSCI 699: Robot Learning - Lecture 3 19

-__
Dynamic programming (deterministic)

];:(ST) — TT(ST), fOI‘ all ST ES
fort =T —-1to0do

Ji(s;) = max 1:(sgap) +Ji1(fi (54, ap)), forall s, € 8
atEcA(St)

return /5 (-), /1 (), ..., /7 () J30) = -1

J3(G) =3
ro(A L) = 2 —> r(H) =1
J3(H) =1

CSCI 699: Robot Learning - Lecture 3 20

-__
Dynamic programming (deterministic)

];:(ST) — TT(ST), fOI‘ all ST ES
fort =T —-1to0do

Ji(s;) = max 1:(sgap) +Ji1(fi (54, ap)), forall s, € 8
atEcA(St)

return /o(-), /7 (), ..., Jr () J3(D) = —1
ro(A L) =2

—P r;(H) =1

CSCI 699: Robot Learning - Lecture 3 21

-__
Dynamic programming (deterministic)

];:(ST) — TT(ST), fOI‘ all ST ES
fort=T—-—1to0do
Ji(s;) = max 1:(sgap) +Ji1(fi (54, ap)), forall s, € 8

atEcA(St)
return Jo(-), /1 (), ... J7 (")
Ji(B) =5
(A1) =2 —» 3(6) =3
<C) =8
ro(A L) = 2 —p (H) =1

CSCI 699: Robot Learning - Lecture 3 22

-__
Dynamic programming (deterministic)

];:(ST) — TT(ST), fOI‘ all ST ES
fort =T —-1to0do

Ji(s;) = max 1:(sgap) +Ji1(fi (54, ap)), forall s, € 8
atEcA(St)

return /;(-),J1 (), ... J7 (")
ro(A 1) = 2 —> 15(0) =3
J5(A) =10 <
ro(A L) =2

—P r;(H) =1

CSCI 699: Robot Learning - Lecture 3 23

Dynamic programming (deterministic)

];:(ST) — TT(ST), fOI‘ all ST ES
fort =T —-1to0do

Je(se) = tmjgit) re(Se, ar) + Ji41(fe(se,ap)), forall s, € §

return /;(-), /7 (), ..., J7 ()

Jo(A) =10 ;
ro(A L) = 2 %& ra(H) = 1
1 2

CSCI 699: Robot Learning - Lecture 3 24

—p 13(G) =3

Comments

1- We discretized the time.
Otherwise, we would have to deal with differential equations:

2(t) = f(x(@®), u®))

These are usually more difficult to solve. We will mostly focus on
discrete-time problems in this course. Exception:

e Sui et al., Safe Exploration for Optimization with Gaussian Processes (2015).

. e Robey et al., Learning Control Barrier Functions from Expert Demonstrations
Safe and robust learning: o).

e Bansal and Tomlin, Deepreach: A Deep Learning Approach to High-dimensional
Reachability (2021).

CSCI 699: Robot Learning - Lecture 3 25

Comments

2- We quantized the state and action spaces.
This allows us to loop over all states and actions.

Reinforcement learning can be used for continuous spaces, too!

CSCI 699: Robot Learning - Lecture 3 26

Comments

3- Dynamic programming gives the globally optimal solution!

CSCI 699: Robot Learning - Lecture 3 27

Comments

4- Constraints help decrease computational costs.

In our example, we did not loop over all states, and optimized
over only the feasible actions.

— .

CSCI 699: Robot Learning - Lecture 3 28

Comments

5- Curse of dimensionality: Computational complexity and
memory complexity of dynamic programming increases with the
size of the state space.

Size of the state space often increases exponentially with its
dimensionality.

CSCI 699: Robot Learning - Lecture 3 29

Today...

* Dynamic programming in stochastic systems

CSCI 699: Robot Learning - Lecture 3 30

Decision making in stochastic systems

. This is a random variable.
State: s; ES
Action: a; € A(sg)
TranSItlon: St+1 — ft(St' at, Wt)/ or St+1 ~ P(l St' at)

We introduce policies since
Policies: m = (mg, my, ..., Ty_1) Where a; = m;(S;) —we will find an optimal
closed-loop policy.

Expected total reward:
T-1

J(50) = Buguag,aw_y |7r(57) +) 1, me(s0), we)
t=0

Decision making problem:]*_(SO) = max J;(Sg)
T

CSCI 699: Robot Learning - Lecture 3 31

Principle of optimality (stochastic)

Suppose (mg, 1, ..., Tr_1) is an optimal solution to the decision
making problem and assume state s, is reachable.

Then, an optimal solution to the subproblem for moving from
state s; at time t until time T is (7;, ;4 1, .., T7_1).

Tail of optimal policies = Optimal for the tail subproblem

CSCI 699: Robot Learning - Lecture 3 32

Dynamic programming (stochastic)

]T(ST) — TT(ST), fOl‘ all ST ES
fort =T —-1to0do

Je(s¢) = max Eyy, (1 (st ap, we) + Jeg1 (Fe (e, ap, we)], for all s, € §
atEa‘l(st)

return]O(’)J]l ()1 ;]T(°)

CSCI 699: Robot Learning - Lecture 3 33

Comments

DP in stochastic systems suffers from the same problems as DP in
deterministic systems.

Also, modeling transitions perfectly is not always possible.

CSCI 699: Robot Learning - Lecture 3 34

Today...

* Markov decision processes

CSCI 699: Robot Learning - Lecture 3 35

Markov decision processes (MDP)

MDPs are usetul tools to model an agent’s interaction with its
environment.

Reinforcement learning algorithms try to solve MDPs.

They have advantages over DD, as they only need a reward function.

CSCI 699: Robot Learning - Lecture 3 36

- ___
* .S . We are looking at the infinite horizon case,
Inf 1n1te hOrlZ on MDPS since it makes stationary policies optimal.

State: SES We removed the dependence on the state, although

/ that’s also creates interesting research questions.
a€A

Transition: s;.; ~ P(:| s¢, a;)

Action:
Reward: Tt — R(St, at)

Discount: y € [0,1)
Policy: m:8 > AormS > AA

CSCI 699: Robot Learning - Lecture 3 37

Infinite horizon MDPs

State: SES

Action: a€A

Transition: sy, ; ~ P(:| s¢, a;)
Reward: 1 = R(s¢,a¢)
Discount: y € [0,1)

Policy: m:8 > AormS > AA
Goal:

T = arg max [E Z]/tR(St;T[(St))
& Lt=0 B

CSCI 699: Robot Learning - Lecture 3 38

An example MDP

Goal: Achieve a high score in the Atari game “Breakout”

States: Image of the current screen (?)

Actions: Left and right actions . .

Reward: Change in the score of the game

CSCI 699: Robot Learning - Lecture 3

39

Playing atari with deep reinforcement learning
Mnih et al., NeurIPS Deep Learning Workshop 2013

Another example MDP

Goal: Make an RC helicopter fly and perform some maneuvers

States: Sensory input of the helicopter

=
Actions: Control inputs S

Reward: Positive for the maneuvers, negative for crashing
(This is usually what we need to hand-design)

CSCI 699: Robot Learning - Lecture 3 41

Autonomous helicopter aerobatics through apprenticeship learning
Abbeel et al., IJRR 2010

Not that easy!

Goal: Make an RC helicopter fly and perform some maneuvers

States: Sensory input of the helicopter

e
Actions: Control inputs S

[Reward: Positive for the maneuvers, negative for crashing]

This is a very naive reward function. They instead learned the reward from expert
demonstrations. We will cover this topic in a few weeks.

CSCI 699: Robot Learning - Lecture 3 43

Infinite horizon MDPs

State: SES

Action: a€A

Transition: sy, ; ~ P(:| s¢, a;)
Reward: 1 = R(s¢,a¢)
Discount: y € [0,1)

Policy: m:8 > AormS > AA

Reinforcement learning tries to solve this problem.
Goal: __—

T = arg max [E Z]/tR(St;T[(St))
& Lt=0 B

CSCI 699: Robot Learning - Lecture 3 44

Partially observable MDPs

State: SES Observation: 0€O0
Action: a €A Observation Model: o; ~ 2(:] s;)
Transition: sy, ; ~ P(:| s¢, a;)

Reward: 1 = R(s¢,a¢)

Discount: y € [0,1)

Policy: m:0 > Aorm:0 - AA

Goal:

TL'* — arg maXIE E th(StJT[(Ot))
T
Lt=0 -

CSCI 699: Robot Learning - Lecture 3 45

Today...

* Value/policy iteration

CSCI 699: Robot Learning - Lecture 3 46

Value functions

State value function: VT(s) = E [X2oyir: | s = 5]
State-action value function: Q7(s,a) = E [X2oV 1 | 5o = s,a0 = a]

VT(s) = R(s,n(s)) +]/]ESINP(.ls’n.(S))[Vn(S’)]
QT[(S, a) — R(S, Cl) ~+ yIES’~P(-|S,a),a’~T[(S’) [QT[(S’, al)]

For any stationary policy, these have unique solutions.
Hint: Think of it as a system of linear equations.

CSCI 699: Robot Learning - Lecture 3 47

Bellman equations

State value function: VT(s) = E [X2oyir: | s = 5]
State-action value function: Q7(s,a) = E [X2oV 1 | 5o = s,a0 = a]

V*(s) = max| R(s,a) +y 2 P(s' | s,a)V*(s")
a
s'es

\\ J
Y

This is just Q*(s, a)!

CSCI 699: Robot Learning - Lecture 3 48

Bellman equations

State value function: VT(s) = E [X2oyir: | s = 5]
State-action value function: Q7(s,a) = E [X2oV 1 | 5o = s,a0 = a]

V*(s) = max R(s,a) +y 2 P(s' | s,a)V*(s")

s'es

Q*(s,a) = R(s,a) + vy 2 P(s’' |s,a) rr}lz;lx Q*(s',a’)

s'es

CSCI 699: Robot Learning - Lecture 3 49

Value iteration

Idea: Take Bellman equation and iterate until it converges. It does
converge because it is a contractive mapping.

Vo(s) =0foralls €S

for k = 0,1, ... until convergence:
forall s € §:

Vier1(s) = m;lx(R(s, a) +y dges P(s' |s, a)Vk(S’))

Each iteration is O(|S8|?|A|).

CSCI 699: Robot Learning - Lecture 3 50

Value iteration

Idea: Take Bellman equation and iterate until it converges. It does
converge because it is a contractive mapping.

Qo(s,a) =0foralls€ S, a€e A
for k = 0,1, ... until convergence:
foralls €S, a € A:

Qr+1(s,a) = R(s,a) +y 2ges P(s' I s,a) max Q,(s',a")

Each iteration is O (|S|%|A|%).

CSCI 699: Robot Learning - Lecture 3 51

Policy iteration

Initialize a random policy 7.

This is called policy evaluation.

for k = 0,1, ... until convergence: /' Itis 0(|S|3).

Solve the following system for V"k:
V(5) = Bgmyo[R(5 @) + 7 Bres P(s” 1 5,@)V™(s")]

This is called policy improvement.

foralls € §: — — Itis O(ISI2|Al).

M, (s) = arg mC?X(R(S, a) +y tes P(s' s, a)V”k(S'))

CSCI 699: Robot Learning - Lecture 3 52

-__
Value iteration vs policy iteration

* Both converge.

* Policy iteration requires more complex implementation.

* In practice, policy iteration usually converges faster.

CSCI 699: Robot Learning - Lecture 3 53

Today...

* Dynamic programming in deterministic systems
* Dynamic programming in stochastic systems

* Markov decision processes

We are still assuming we know

° Value /pOlle iteration — the transition function.

CSCI 699: Robot Learning - Lecture 3 54

Next time...

* Model-based reinforcement learning

* Model-free reinforcement learning

CSCI 699: Robot Learning - Lecture 3 55

	Slide 1: Robot Learning
	Slide 4: So far…
	Slide 5: So far…
	Slide 6: Robot learning
	Slide 7: Today…
	Slide 8: Decision making in deterministic systems
	Slide 9: Decision making in deterministic systems
	Slide 10: Decision making in deterministic systems
	Slide 11: Decision making in deterministic systems
	Slide 12: Principle of optimality
	Slide 13: Principle of optimality
	Slide 14: Principle of optimality
	Slide 15: Principle of optimality (deterministic)
	Slide 16: How to apply principal of optimality
	Slide 17: How to apply principal of optimality
	Slide 18: Dynamic programming (deterministic)
	Slide 19: Dynamic programming (deterministic)
	Slide 20: Dynamic programming (deterministic)
	Slide 21: Dynamic programming (deterministic)
	Slide 22: Dynamic programming (deterministic)
	Slide 23: Dynamic programming (deterministic)
	Slide 24: Dynamic programming (deterministic)
	Slide 25: Comments
	Slide 26: Comments
	Slide 27: Comments
	Slide 28: Comments
	Slide 29: Comments
	Slide 30: Today…
	Slide 31: Decision making in stochastic systems
	Slide 32: Principle of optimality (stochastic)
	Slide 33: Dynamic programming (stochastic)
	Slide 34: Comments
	Slide 35: Today…
	Slide 36: Markov decision processes (MDP)
	Slide 37: Infinite horizon MDPs
	Slide 38: Infinite horizon MDPs
	Slide 39: An example MDP
	Slide 40
	Slide 41: Another example MDP
	Slide 42
	Slide 43: Not that easy!
	Slide 44: Infinite horizon MDPs
	Slide 45: Partially observable MDPs
	Slide 46: Today…
	Slide 47: Value functions
	Slide 48: Bellman equations
	Slide 49: Bellman equations
	Slide 50: Value iteration
	Slide 51: Value iteration
	Slide 52: Policy iteration
	Slide 53: Value iteration vs policy iteration
	Slide 54: Today…
	Slide 55: Next time…

