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Robot learning

We are here today
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Today...

* Dynamic programming in deterministic systems
* Dynamic programming in stochastic systems

* Markov decision processes

* Value/policy iteration
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Decision making in deterministic systems

State: s; ES
Action: a; € A(sg)
Transition: s;.1; = f; (S, a;)
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Decision making in deterministic systems

State: s; ES
Action: a; € A(sg)

Traditionally, it is cost, not reward. In general, different

Transition: S fr1 = f ¢ ( S £ a t) communities use different notation and conventions.
Total reward: /
T—-1
J (503 @0, oy @r-1) = Tr(sp) + ) 1i(s0,00)
W t=0 ),

¥

Finite horizon
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Decision making in deterministic systems

State: s; ES
Action: a; € A(s;)
Transition: s;.1; = f; (S, a;)

Total reward:
T—1

J (503 @0, v, @r1) = Tr(sr) + ) Tilse,a0)
t=0
Decision making problem:

“(sn) = max SalAq, eee, A
] ( O) atEc/l(St),t=O,1,...,T—1]( 0, 0> y 1T 1)
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Decision making in deterministic systems

State: St € S Discrete-time assumption
Action: a, € A(s;) /
.. Additive rewards assumption
Transition: s;.1; = f; (S, a;)
Total reward: . /
-1

J (503 @0, v, @r1) = Tr(sr) + ) Tilse,a0)
t=0
Decision making problem:

“(sn) = max SalAq, eee, A
] ( O) atEc/l(St),t=O,1,...,T—1]( 0, 0> y 1T 1)

CSCI 699: Robot Learning - Lecture 3 11




Principle of optimality

It’s the key concept behind the dynamic programming approach.

Suppose A — B — (C is the optimal B
path from A to C. \]BC
First segment reward: J4p A /] AR C

Second segment reward: /g
Optimal reward J4. = Jap + Jac
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Principle of optimality

If A- B - C is the optimal path from A to C, then B - C is the

optimal path from B to C. 5

IBc

A /]AB C
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Principle of optimality

If A- B - C is the optimal path from A to C, then B - C is the
optimal path from B to C.

B
Proof: Suppose B — D - C is the \]BC
optimal path from B to C. Then, s
Jep +Jpc > IBc y g C
and ) D ]
Jap +/ep Y Jpc > Jas +Jsc = Jac bc

This is a contradiction.
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Principle of optimality (deterministic)

Suppose (ay, aj, ---, ar_41) is an optimal solution to the decision
making problem for an initial state s, and the systems evolves as
(Sg, S1, ---» ST) for this initial state and action sequence.

Then, an optimal solution to the subproblem for moving from
state s; at time t until time T is (af, a;;q, ..., A7_1).

Tail of an optimal solution = Optimal for the tail subproblem
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How to apply principal of optimality

Goal: Gofrom Ato E. B B

Given: B — E, C — E and D — E are the optimal , 70

paths to E from B, C and D, respectively. 4 ’\ c c \
. L /TS N E

Principle of optimality: \

If A — B is the initial segment of the optimal RS . D D )

path from A to E, then B — E is the final ~

segment of this path. ,
Jape = Jap tJBE

Then, we find the optimal path by comparing: Jace = Jac +Jck
Jape =Jap +JpE
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How to apply principal of optimality

Start from the terminal state and go backward in time. b
— oy
First, compute the optimal paths to E from all possible c \
previous states. The rewards of these paths are reward-to-go =~ Q‘ E
(sometimes called return) from those states. I
D _7

Repeat this procedure backward in time until t = 0. -

“Life can only be understood backwards;
- but it must be lived forwards.”
N - Seoren Kierkegaard
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-____________________________________________________________________
Dynamic programming (deterministic)

];:(ST) — TT(ST), fOI‘ all ST ES
fort =T —-1to0do

Ji(s;) = max 1:(sgap) +Ji1(fi (54, ap)), forall s, € 8
atEcA(St)

return J5(),J2 (), o, J3 ()
ro(A L) =2

—P r;(H) =1
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-____________________________________________________________________
Dynamic programming (deterministic)

];:(ST) — TT(ST), fOI‘ all ST ES
fort =T —-1to0do

Ji(s;) = max 1:(sgap) +Ji1(fi (54, ap)), forall s, € 8
atEcA(St)

return /i (-), /1 (-), ....J7 ()

J3(G) =3
ro(A, L) =2 —p r,(H) =1
J3(H) =1
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-____________________________________________________________________
Dynamic programming (deterministic)

];:(ST) — TT(ST), fOI‘ all ST ES
fort =T —-1to0do

Ji(s;) = max 1:(sgap) +Ji1(fi (54, ap)), forall s, € 8
atEcA(St)

return /5 (-), /1 (), ..., /7 () J30) = -1

J3(G) =3
ro(A L) = 2 —> r(H) =1
J3(H) =1
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-____________________________________________________________________
Dynamic programming (deterministic)

];:(ST) — TT(ST), fOI‘ all ST ES
fort =T —-1to0do

Ji(s;) = max 1:(sgap) +Ji1(fi (54, ap)), forall s, € 8
atEcA(St)

return /o(-), /7 (), ..., Jr () J3(D) = —1
ro(A L) =2

—P r;(H) =1
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-____________________________________________________________________
Dynamic programming (deterministic)

];:(ST) — TT(ST), fOI‘ all ST ES
fort=T—-—1to0do
Ji(s;) = max 1:(sgap) +Ji1(fi (54, ap)), forall s, € 8

atEcA(St)
return Jo(-), /1 (), ... J7 (")
Ji(B) =5
(A1) =2 —» 3(6) =3
<C) =8
ro(A L) = 2 —p (H) =1
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-____________________________________________________________________
Dynamic programming (deterministic)

];:(ST) — TT(ST), fOI‘ all ST ES
fort =T —-1to0do

Ji(s;) = max 1:(sgap) +Ji1(fi (54, ap)), forall s, € 8
atEcA(St)

return /;(-),J1 (), ... J7 (")
ro(A 1) = 2 —> 15(0) =3
J5(A) =10 <
ro(A L) =2

—P r;(H) =1
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Dynamic programming (deterministic)

];:(ST) — TT(ST), fOI‘ all ST ES
fort =T —-1to0do

Je(se) = tmjgit) re(Se, ar) + Ji41(fe(se,ap)), forall s, € §

return /;(-), /7 (), ..., J7 ()

Jo(A) =10 ;
ro(A L) = 2 %& ra(H) = 1
1 2
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Comments

1- We discretized the time.
Otherwise, we would have to deal with differential equations:

2(t) = f(x(@®), u®))

These are usually more difficult to solve. We will mostly focus on
discrete-time problems in this course. Exception:

e Sui et al., Safe Exploration for Optimization with Gaussian Processes (2015).

. e Robey et al., Learning Control Barrier Functions from Expert Demonstrations
Safe and robust learning: o).

e Bansal and Tomlin, Deepreach: A Deep Learning Approach to High-dimensional
Reachability (2021).
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Comments

2- We quantized the state and action spaces.
This allows us to loop over all states and actions.

Reinforcement learning can be used for continuous spaces, too!
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Comments

3- Dynamic programming gives the globally optimal solution!
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Comments

4- Constraints help decrease computational costs.

In our example, we did not loop over all states, and optimized
over only the feasible actions.

— .
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Comments

5- Curse of dimensionality: Computational complexity and
memory complexity of dynamic programming increases with the
size of the state space.

Size of the state space often increases exponentially with its
dimensionality.
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Today...

* Dynamic programming in stochastic systems
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Decision making in stochastic systems

. This is a random variable.
State: s; ES
Action: a; € A(sg)
TranSItlon: St+1 — ft(St' at, Wt)/ or St+1 ~ P(l St' at)

We introduce policies since
Policies:  m = (mg, my, ..., Ty_1) Where a; = m;(S;) —we will find an optimal
closed-loop policy.

Expected total reward:
T-1

J(50) = Buguag,aw_y |7r(57) + ) 1, me(s0), we)
t=0

Decision making problem: ]*_(SO) = max J;(Sg)
T
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Principle of optimality (stochastic)

Suppose (mg, 1, ..., Tr_1) is an optimal solution to the decision
making problem and assume state s, is reachable.

Then, an optimal solution to the subproblem for moving from
state s; at time t until time T is (7;, ;4 1, .., T7_1).

Tail of optimal policies = Optimal for the tail subproblem
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Dynamic programming (stochastic)

]T(ST) — TT(ST), fOl‘ all ST ES
fort =T —-1to0do

Je(s¢) = max Eyy, (1 (st ap, we) + Jeg1 (Fe (e, ap, we )], for all s, € §
atEa‘l(st)

return ]O(’)J]l ()1 ;]T(°)
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Comments

DP in stochastic systems suffers from the same problems as DP in
deterministic systems.

Also, modeling transitions perfectly is not always possible.
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Today...

* Markov decision processes
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Markov decision processes (MDP)

MDPs are usetul tools to model an agent’s interaction with its
environment.

Reinforcement learning algorithms try to solve MDPs.

They have advantages over DD, as they only need a reward function.
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- _________________________________________________________________________
* .S . We are looking at the infinite horizon case,
Inf 1n1te hOrlZ on MDPS since it makes stationary policies optimal.

State: SES We removed the dependence on the state, although

/ that’s also creates interesting research questions.
a€A

Transition: s;.; ~ P(:| s¢, a;)

Action:
Reward: Tt — R(St, at)

Discount: y € [0,1)
Policy: m:8 > AormS > AA
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Infinite horizon MDPs

State: SES

Action: a€A

Transition: sy, ; ~ P(:| s¢, a;)
Reward: 1 = R(s¢,a¢)
Discount: y € [0,1)

Policy: m:8 > AormS > AA
Goal:

T = arg max [E Z]/tR(St;T[(St))
& Lt=0 B
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An example MDP

Goal: Achieve a high score in the Atari game “Breakout”

States: Image of the current screen (?)

Actions: Left and right actions . .

Reward: Change in the score of the game

CSCI 699: Robot Learning - Lecture 3
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Playing atari with deep reinforcement learning
Mnih et al., NeurIPS Deep Learning Workshop 2013



Another example MDP

Goal: Make an RC helicopter fly and perform some maneuvers

States: Sensory input of the helicopter

=
Actions: Control inputs S

Reward: Positive for the maneuvers, negative for crashing
(This is usually what we need to hand-design)
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Autonomous helicopter aerobatics through apprenticeship learning
Abbeel et al., IJRR 2010



Not that easy!

Goal: Make an RC helicopter fly and perform some maneuvers

States: Sensory input of the helicopter

e
Actions: Control inputs S

[Reward: Positive for the maneuvers, negative for crashing ]

This is a very naive reward function. They instead learned the reward from expert
demonstrations. We will cover this topic in a few weeks.
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Infinite horizon MDPs

State: SES

Action: a€A

Transition: sy, ; ~ P(:| s¢, a;)
Reward: 1 = R(s¢,a¢)
Discount: y € [0,1)

Policy: m:8 > AormS > AA

Reinforcement learning tries to solve this problem.
Goal: __—

T = arg max [E Z]/tR(St;T[(St))
& Lt=0 B
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Partially observable MDPs

State: SES Observation: 0€O0
Action: a €A Observation Model:  o; ~ 2(:] s;)
Transition: sy, ; ~ P(:| s¢, a;)

Reward: 1 = R(s¢,a¢)

Discount: y € [0,1)

Policy: m:0 > Aorm:0 - AA

Goal:

TL'* — arg maXIE E th(StJT[(Ot))
T
Lt=0 -
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Today...

* Value/policy iteration
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Value functions

State value function: VT(s) = E [ X2oyir: | s = 5]
State-action value function: Q7(s,a) = E [ X2oV 1 | 5o = s,a0 = a]

VT(s) = R(s,n(s)) + ]/]ESINP(.ls’n.(S))[Vn(S’)]
QT[(S, a) — R(S, Cl) ~+ yIES’~P(-|S,a),a’~T[(S’) [QT[(S’, al)]

For any stationary policy, these have unique solutions.
Hint: Think of it as a system of linear equations.
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Bellman equations

State value function: VT(s) = E [ X2oyir: | s = 5]
State-action value function: Q7(s,a) = E [ X2oV 1 | 5o = s,a0 = a]

V*(s) = max| R(s,a) +y 2 P(s' | s,a)V*(s")
a
s'es

\\ J
Y

This is just Q*(s, a)!
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Bellman equations

State value function: VT(s) = E [ X2oyir: | s = 5]
State-action value function: Q7(s,a) = E [ X2oV 1 | 5o = s,a0 = a]

V*(s) = max R(s,a) +y 2 P(s' | s,a)V*(s")

s'es

Q*(s,a) = R(s,a) + vy 2 P(s’' |s,a) rr}lz;lx Q*(s',a’)

s'es
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Value iteration

Idea: Take Bellman equation and iterate until it converges. It does
converge because it is a contractive mapping.

Vo(s) =0foralls €S

for k = 0,1, ... until convergence:
forall s € §:

Vier1(s) = m;lx(R(s, a) +y dges P(s' |s, a)Vk(S’))

Each iteration is O(|S8|?|A|).
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Value iteration

Idea: Take Bellman equation and iterate until it converges. It does
converge because it is a contractive mapping.

Qo(s,a) =0foralls€ S, a€e A
for k = 0,1, ... until convergence:
foralls €S, a € A:

Qr+1(s,a) = R(s,a) +y 2ges P(s' I s,a) max Q,(s',a")

Each iteration is O (|S|%|A|%).
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Policy iteration

Initialize a random policy 7.

This is called policy evaluation.

for k = 0,1, ... until convergence: /' Itis 0(|S|3).

Solve the following system for V"k:
V(5) = Bgmyo[R(5 @) + 7 Bres P(s” 1 5,@)V™(s")]

This is called policy improvement.

foralls € §: — — Itis O(ISI2|Al).

M, (s) = arg mC?X(R(S, a) +y tes P(s' s, a)V”k(S'))
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-____________________________________________________________________
Value iteration vs policy iteration

* Both converge.

* Policy iteration requires more complex implementation.

* In practice, policy iteration usually converges faster.
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Today...

* Dynamic programming in deterministic systems
* Dynamic programming in stochastic systems

* Markov decision processes

We are still assuming we know

° Value /pOlle iteration — the transition function.
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Next time...

* Model-based reinforcement learning

* Model-free reinforcement learning
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