Robot Learning

Reinforcement learning

Last time...

• Dynamic programming in deterministic systems

• Dynamic programming in stochastic systems

Markov decision processes

Value/policy iteration

We assumed we know the transition function.

Today...

• Model-based reinforcement learning

• Model-free reinforcement learning

A great tutorial

ICML 2018 tutorial on "Optimization perspectives on learning to control" by Ben Recht:

https://youtu.be/hYw_qhLUE0o

Infinite horizon MDPs

State: $s \in S$

Action: $a \in \mathcal{A}$

Transition: $s_{t+1} \sim P(\cdot | s_t, a_t)$

Reward: $r_t = R(s_t, a_t)$

Discount: $\gamma \in [0,1)$

Policy: $\pi: \mathcal{S} \to \mathcal{A} \text{ or } \pi: \mathcal{S} \to \Delta \mathcal{A}$

Goal:

$$\pi^* = \arg\max_{\pi} \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t, \pi(s_t))\right]$$

As a constrained optimization problem

maximize
$$\mathbb{E}_{w} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right]$$
subject to $s_{t} = f(s_{t}, a_{t}, w_{t})$

subject to
$$s_t = f(s_t, a_t, w_t)$$

 $a_t = \pi(s_t)$

Now, what if we don't know the transition function f?

As a constrained optimization problem

maximize
$$\mathbb{E}_{w} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right]$$
subject to $s_{t} = f(s_{t}, a_{t}, w_{t})$

$$a_{t} = \pi(s_{t})$$

Reinforcement Learning

Model-based

Model-free

Approximate DP
Direct Policy Search

Model-based RL

maximize
$$\mathbb{E}_{w} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right]$$
 subject to $s_{t} = f(s_{t}, a_{t}, w_{t})$
$$a_{t} = \pi(s_{t})$$

- 1. Collect some data from the environment: $(s_t, a_t, r_t, s_{t+1})_{t=1}^N$.
- 2. Use supervised learning to learn \hat{f} and \hat{R} (if not already known).
- 3. Solve the approximate problem assuming \hat{f} and \hat{R} .

Approximate dynamic programming

$$\max_{\pi} \mathbb{E}_{\mathbf{w}} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right]$$

subject to
$$s_t = f(s_t, a_t, w_t)$$

 $a_t = \pi(s_t)$

Remember Bellman equation:

$$Q(s,a) = R(s,a) + \gamma \mathbb{E}_{s'|s,a} \left[\max_{a' \in \mathcal{A}} Q(s',a') \right]$$

Collect some data from environment and learn a *Q*-function.

Approximate dynamic programming

$$\underset{\pi}{\text{maximize}} \quad \mathbb{E}_{w} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right]$$

subject to
$$s_t = f(s_t, a_t, w_t)$$

 $a_t = \pi(s_t)$

$$Q(s_t, a_t) \approx R(s_t, a_t) + \gamma \max_{a' \in \mathcal{A}} Q(s_{t+1}, a')$$

$$Q_{\text{new}}(s_t, a_t) = (1 - \eta)Q_{\text{old}}(s_t, a_t) + \eta \left(R(s_t, a_t) + \gamma \max_{a' \in \mathcal{A}} Q_{\text{old}}(s_{t+1}, a') \right)$$

This is the SARSA algorithm.

Approximate dynamic programming

 $\underset{\pi}{\text{maximize}} \quad \mathbb{E}_{\boldsymbol{w}} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right]$

subject to
$$s_t = f(s_t, a_t, w_t)$$

 $a_t = \pi(s_t)$

$$Q(s_t, a_t) \approx R(s_t, a_t) + \gamma \max_{a' \in \mathcal{A}} Q(s_{t+1}, a')$$

$$Q_{\text{new}}(s_t, a_t) = Q_{\text{old}}(s_t, a_t) + \eta \left(R(s_t, a_t) + \gamma \max_{a' \in \mathcal{A}} Q_{\text{old}}(s_{t+1}, a') - Q_{\text{old}}(s_t, a_t) \right)$$

This is TD error. Many algorithms (e.g., DQN) use it.

maximize
$$\mathbb{E}_{w} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right]$$

subject to $s_{t} = f(s_{t}, a_{t}, w_{t})$
$$a_{t} = \pi(s_{t})$$

Idea: Formulate it as an unconstrained optimization to solve for π .

But the set of possible π 's are too large. Instead, make it a stochastic policy with parameters θ .

Objective to maximize: $J(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)}[R(\tau)]$

 $P_{\theta}(\tau)$ is the probability of trajectory τ under policy π_{θ} .

 $R(\tau)$ is cumulative discounted return of trajectory τ .

$$J(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)}[R(\tau)]$$
$$= \int P_{\theta}(\tau)R(\tau)d\tau$$

$$\nabla_{\theta} J(\theta) = \int \nabla_{\theta} P_{\theta}(\tau) R(\tau) d\tau$$

$$= \int R(\tau) \nabla_{\theta} P_{\theta}(\tau) d\tau$$

$$= \int R(\tau) P_{\theta}(\tau) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P_{\theta}(\tau)} d\tau$$

$$= \int R(\tau) P_{\theta}(\tau) \nabla_{\theta} \log P_{\theta}(\tau) d\tau$$

$$= \mathbb{E}_{\tau \sim P_{\theta}(\tau)} [R(\tau) \nabla_{\theta} \log P_{\theta}(\tau)]$$

 $\nabla_{\theta} \log P_{\theta}(\tau) = \sum \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)} [R(\tau) \nabla_{\theta} \log P_{\theta}(\tau)]$$

$$\log P_{\theta}(\tau) = \log \left(P(s_0) \prod_{t=0}^{\infty} P(s_{t+1} \mid s_t, a_t) \pi_{\theta}(a_t \mid s_t) \right)$$

$$= \log P(s_0) + \sum_{t=0}^{\infty} \log P(s_{t+1} \mid s_t, a_t) + \sum_{t=0}^{\infty} \log \pi_{\theta}(a_t \mid s_t)$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \right]$$

Because of causality:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \sum_{t'=t}^{\infty} \gamma^{t'} R(s_{t'}, a_{t'}) \right]$$

This is the REINFORCE algorithm. It is also known as policy gradient.

On-policy vs. off-policy

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \sum_{t'=t}^{\infty} \gamma^{t'} R(s_{t'}, a_{t'}) \right]$$
This is on-policy.

On-policy vs. off-policy

maximize
$$\mathbb{E}_{w} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right]$$
 subject to $s_{t} = f(s_{t}, a_{t}, w_{t})$
$$a_{t} = \pi(s_{t})$$

- 1. Collect some data from the environment: $(s_t, a_t, r_t, s_{t+1})_{t=1}^N$.
- 2. Use supervised learning to learn \hat{f} and \hat{R} (if not already known).
- 3. Solve the approximate problem assuming \hat{f} and \hat{R} .

On-policy vs. off-policy

$$\underset{\pi}{\text{maximize}} \quad \mathbb{E}_{\boldsymbol{w}} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right]$$

subject to
$$s_t = f(s_t, a_t, w_t)$$

 $a_t = \pi(s_t)$

$$Q(s_t, a_t) \approx R(s_t, a_t) + \gamma \max_{a' \in \mathcal{A}} Q(s_{t+1}, a')$$

$$Q_{\text{new}}(s_t, a_t) = (1 - \eta)Q_{\text{old}}(s_t, a_t) + \eta \left(R(s_t, a_t) + \gamma \max_{a' \in \mathcal{A}} Q_{\text{old}}(s_{t+1}, a') \right)$$

This is the SARSA algorithm.

Today...

We relaxed the assumption that we have the transition model.

We still assume we have access to the reward function/samples.

Next time...

What if we do not have access to the reward function/samples but some expert trajectories?

Imitation learning

Inverse reinforcement learning