
Robot Learning
Imitation learning

Inverse reinforcement learning



Last time…

maximize
𝜋

𝔼𝒘 ෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝑎𝑡

subject to 𝑠𝑡 = 𝑓 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡
𝑎𝑡 = 𝜋(𝑠𝑡)
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 Reinforcement Learning 

Model-based Model-free

Approximate DP

Direct Policy Search



Last time…

maximize
𝜋

 𝔼𝒘 ෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝑎𝑡

 

subject to 𝑠𝑡 = 𝑓 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡
 𝑎𝑡 = 𝜋(𝑠𝑡)
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This is our optimization variable.

This is the world model.

Where does this come from?



Sometimes it is given…
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Goal: Achieve a high score in the Atari game “Breakout”

States: Image of the current screen (?)

Actions: Left and right actions

Reward: Change in the score of the game



Sometimes we (try to) design it…
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What is a good reward function for 
an autonomous car?

Proposal:

• Negative reward for crashing

• Positive reward for high speed

• Negative reward for too high speed
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Sometimes we (try to) design it…
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What is a good reward function for a 
robot vacuum?

Proposal:

• Positive for vacuuming dirt

Artificial Intelligence: A Modern Approach
Russell and Norvig



Sometimes we (try to) design it…
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What is a good reward function for FetchPush?

Proposal:

• Negative for error distance

OpenAI Gym
Brockman et al.



Goal: Make an RC helicopter fly and perform some maneuvers

States: Sensory input of the helicopter

Actions: Control inputs

Reward: Positive for the maneuvers, negative for crashing

Sometimes we (try to) design it…
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Autonomous helicopter aerobatics through apprenticeship learning
Abbeel et al., IJRR 2010
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Goal: Make an RC helicopter fly and perform some maneuvers

States: Sensory input of the helicopter

Actions: Control inputs

Reward: Positive for the maneuvers, negative for crashing

Not that easy!
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This is a very naïve reward function. They instead learned the reward from expert demonstrations.



Today…

• Imitation learning

• Inverse reinforcement learning (IRL)
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Imitation learning vs. IRL

Imitation learning

directly learns a policy that 
imitates the expert.

simple, not ambiguous, fast
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People sometimes use them interchangeably.
We will use the most common definitions.

Inverse reinforcement learning

learns a reward function which, 
when optimized, performs the task.

interpretable, generalizable

Given some expert data 𝑠0, 𝑎0, 𝑠1, 𝑎1, … , …



Behavioral cloning

Train a neural network to map states 
into expert actions.
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ALVINN: An Autonomous Land Vehicle in a Neural Network
Pomerleau, NeurIPS 1988

𝑠𝑖
Neural

Network
ො𝑎𝑖 𝐿 𝑎𝑖 , ො𝑎𝑖



Behavioral cloning
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Compounding errors
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Small errors in the actions taken 
will slightly deviate the 
trajectory from the expert.

These new states will lead to 
larger errors.



Direct policy learning
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Collect expert
feedback/demonstrations

Supervised
learning

Rollout in
environment

Training data

Learned policy

Trajectories



Direct policy learning
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More on this next week!



Today…

• Imitation learning

• Inverse reinforcement learning (IRL)

CSCI 699: Robot Learning - Lecture 5 19



Inverse reinforcement learning (IRL)
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Kalman, 1964: Inverse optimal control for 1D problems

Boyd et al., 1994: Linear matrix inequality (LMI) for LQ setting

Ng, Russell, 2000: First MDP formulation and reward ambiguity

Abbeel, Ng, 2004: Apprenticeship learning (feature matching)

Ratliff et al., 2006: Max margin planning (MMP)

Ziebart et al., 2008: Max-Ent IRL

From: Stanford CS237B



Today…

• Imitation learning

• Inverse reinforcement learning (IRL)
• Apprenticeship learning

• Maximum margin planning

• Max-Ent IRL
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General IRL formulation

We assume a feature function 𝜙 such that 𝑅 𝑠, 𝑎 = 𝑤⊤𝜙 𝑠, 𝑎 .

We only need to learn 𝑤.
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𝑉𝜋 𝑠 = 𝔼 ෍

𝑡≥0

𝛾𝑡𝑅 𝑠𝑡 , 𝜋(𝑠𝑡) ∣ 𝑠0 = 𝑠

= 𝑤⊤𝔼 ෍

𝑡≥0

𝛾𝑡𝜙 𝑠𝑡 , 𝜋(𝑠𝑡) ∣ 𝑠0 = 𝑠

= 𝑤⊤𝜙 𝜋, 𝑠



General IRL formulation

We know, for any policy 𝜋 and 𝑠 ∈ 𝓢,
𝑉𝜋∗

𝑠 ≥ 𝑉𝜋(𝑠)

which we now write as
𝑤⊤𝜙(𝜋∗, 𝑠) ≥ 𝑤⊤𝜙(𝜋, 𝑠)

This is the only condition 𝑤 must satisfy.

We just solved IRL: it turns out 𝑤 = 0, yay! 
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Reward ambiguity

𝑤⊤𝜙(𝜋∗, 𝑠) ≥ 𝑤⊤𝜙(𝜋, 𝑠)

More generally, if a 𝑤∗ satisfies this condition, 𝑐𝑤∗ will also 
satisfy for any 𝑐 ≥ 0.

Note: Reward ambiguity is not just this. Many 𝑤 vectors satisfy 
the condition even if we constrain 𝑤 2 to a constant.

CSCI 699: Robot Learning - Lecture 5 24



Apprenticeship learning

An attempt to alleviate reward ambiguity. First, assume 𝑤 2 ≤ 1.

Observation:
𝜙 𝜋∗, 𝑠 − 𝜙 𝜋, 𝑠 2 ≤ 𝜖 ⇒  𝑤⊤𝜙 𝜋∗, 𝑠 − 𝑤⊤𝜙 𝜋, 𝑠 ≤ 𝜖

Even if we cannot find the true 𝑤∗, we will get expert-level 
performance if we match the features.
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This is how the helicopter flew!



Apprenticeship learning

In most cases, only a subset of the state space can be initial states.

This means we need to match 𝜙(𝜋∗, 𝑠) only at 𝑠0 ∼ 𝑃 𝑠0 :
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𝜙 𝜋 = 𝔼𝑠0
෍

𝑡≥0

𝛾𝑡𝜙 𝑠𝑡 , 𝜋(𝑠𝑡)



Apprenticeship learning

We iteratively improve the learned 𝑤 and policy.

Compute the optimal features 𝜙(𝜋∗)

Initialize a policy 𝜋0

Loop 𝑖 = 0,1, …:

     Find 𝑤𝑖 that best separates 𝜋∗ from 𝜋𝑖

     Assuming 𝑤𝑖 is true weights, learn 𝜋𝑖+1 optimizing the reward
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Apprenticeship learning

Compute 𝜙(𝜋∗) using expert data

Initialize a policy 𝜋0

for 𝑖 = 0,1, … do:

     𝑤𝑖 , 𝑡𝑖 = arg max
𝑤,𝑡

 𝑡 

                   subject to   𝑤⊤𝜙 𝜋∗ ≥ 𝑤⊤𝜙 𝜋𝑗 + 𝑡, ∀𝑗 ∈ 0,1, … , 𝑖

𝑤 2 ≤ 1

     if 𝑡𝑖 ≤ 𝜖 then: return the best feature-matching policy from 𝜋0, 𝜋1, … , 𝜋𝑖

     else: 𝜋𝑖+1 ← arg max
𝜋

𝑤𝑖
⊤𝜙 𝜋
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We are solving an RL problem in each iteration!



Apprenticeship learning

Compute 𝜙(𝜋∗) using expert data

Initialize a policy 𝜋0

for 𝑖 = 0,1, … do:

     𝑤𝑖 , 𝑡𝑖 = arg max
𝑤,𝑡

 𝑡 

                   subject to   𝑤⊤𝜙 𝜋∗ ≥ 𝑤⊤𝜙 𝜋𝑗 + 𝑡, ∀𝑗 ∈ 0,1, … , 𝑖

𝑤 2 ≤ 1

     if 𝑡𝑖 ≤ 𝜖 then: return the best feature-matching policy from 𝜋0, 𝜋1, … , 𝜋𝑖

     else: 𝜋𝑖+1 ← arg max
𝜋

𝑤𝑖
⊤𝜙 𝜋
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What if the expert is suboptimal?



Today…

• Imitation learning

• Inverse reinforcement learning (IRL)
• Apprenticeship learning

• Maximum margin planning

• Max-Ent IRL
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Maximum margin planning (MMP)

MMP has a similar formulation, but helps with suboptimal experts.

First let’s go over maximal margin classifiers.
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Maximal margin classifiers
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Maximal margin classifiers
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WLOG, assume the separating hyperplane 
has distance 𝑀 to the closest points.



Maximal margin classifiers
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WLOG, assume the separating hyperplane 
has distance 𝑀 to the closest points.

maximize
𝜷,𝑐

𝑀

subject to 𝜷 2 ≤ 1

𝑐 + 𝛽1𝑥1
𝑖

+ 𝛽2𝑥2
𝑖

+ ⋯ ≥ 𝑀

𝑐 + 𝛽1𝑥1
𝑗

+ 𝛽2𝑥2
𝑗

+ ⋯ ≤ −𝑀

for all positive samples 𝑖 

for all negative samples 𝑗

Is it possible that the 
optimal 𝛽 has 𝛽 2 < 1?



Maximal margin classifiers
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WLOG, assume the separating hyperplane 
has distance 𝑀 to the closest points.

subject to 𝜷 2 = 1

𝑐 + 𝛽1𝑥1
𝑖

+ 𝛽2𝑥2
𝑖

+ ⋯ ≥ 𝑀

𝑐 + 𝛽1𝑥1
𝑗

+ 𝛽2𝑥2
𝑗

+ ⋯ ≤ −𝑀

for all positive samples 𝑖 

for all negative samples 𝑗

maximize
𝜷,𝑐

𝑀



Maximal margin classifiers
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WLOG, assume the separating hyperplane 
has distance 𝑀 to the closest points.

subject to 𝜷 2 = 1

𝑐 + 𝛽1𝑥1
𝑖

+ 𝛽2𝑥2
𝑖

+ ⋯ ≥ 𝑀

𝑐 + 𝛽1𝑥1
𝑗

+ 𝛽2𝑥2
𝑗

+ ⋯ ≤ −𝑀

for all positive samples 𝑖 

for all negative samples 𝑗

maximize
𝜷,𝑐

𝑀

Let 𝑤 = 𝛽1, 𝛽2, … /2𝑀

Note 𝑤 2 =
𝛽 2

2𝑀
=

1

2𝑀



Maximal margin classifiers
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subject to 𝜷 2 = 1

𝑐 + 𝛽1𝑥1
𝑖

+ 𝛽2𝑥2
𝑖

+ ⋯ ≥ 𝑀

𝑐 + 𝛽1𝑥1
𝑗

+ 𝛽2𝑥2
𝑗

+ ⋯ ≤ −𝑀

for all positive samples 𝑖 

for all negative samples 𝑗

minimize
𝑤,𝑐

 𝑤 2

Let 𝑤 = 𝛽1, 𝛽2, … /2𝑀

Note 𝑤 2 =
𝛽 2

2𝑀
=

1

2𝑀



Maximal margin classifiers
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subject to 𝑤 2 = 1/2𝑀

𝑐 + 𝛽1𝑥1
𝑖

+ 𝛽2𝑥2
𝑖

+ ⋯ ≥ 𝑀

𝑐 + 𝛽1𝑥1
𝑗

+ 𝛽2𝑥2
𝑗

+ ⋯ ≤ −𝑀

for all positive samples 𝑖 

for all negative samples 𝑗

minimize
𝑤,𝑐

 𝑤 2

Let 𝑤 = 𝛽1, 𝛽2, … /2𝑀

Note 𝑤 2 =
𝛽 2

2𝑀
=

1

2𝑀



Maximal margin classifiers
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subject to 𝑤 2 = 1/2𝑀

𝑐/2𝑀 + 𝑤1𝑥1
𝑖

+ 𝑤2𝑥2
𝑖

+ ⋯ ≥ 1/2

𝑐/2𝑀 + 𝑤1𝑥1
𝑗

+ 𝑤2𝑥2
𝑗

+ ⋯ ≤ −1/2

for all positive samples 𝑖

for all negative samples 𝑗

minimize
𝑤,𝑐

 𝑤 2

Let 𝑤 = 𝛽1, 𝛽2, … /2𝑀

Note 𝑤 2 =
𝛽 2

2𝑀
=

1

2𝑀



Maximal margin classifiers
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subject to

𝑐 𝑤 2 + 𝑤1𝑥1
𝑖

+ 𝑤2𝑥2
𝑖

+ ⋯ ≥ 1/2

𝑐 𝑤 2 + 𝑤1𝑥1
𝑗

+ 𝑤2𝑥2
𝑗

+ ⋯ ≤ −1/2

for all positive samples 𝑖 

for all negative samples 𝑗

minimize
𝑤,𝑐

 𝑤 2

These constraints just mean

𝑤⊤𝑥 𝑖 − 𝑤⊤𝑥 𝑗 ≥ 1
for all positive samples 𝑖 
and negative samples 𝑗.



Maximal margin classifiers
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subject to 𝑤⊤𝑥 𝑖 − 𝑤⊤𝑥 𝑗 ≥ 1

for all positive samples 𝑖 and negative samples 𝑗 

minimize
𝑤,𝑐

 𝑤 2



Maximal margin classifiers
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subject to 𝑤⊤𝑥 𝑖 − 𝑤⊤𝑥 𝑗 ≥ 1

for all positive samples 𝑖 and negative samples 𝑗 

minimize
𝑤

 𝑤 2



Back to MMP

If the expert is optimal, there exists a separating hyperplane 𝑤⊤𝜙 = 𝑐 
such that 𝑤⊤𝜙 𝜋∗ ≥ 𝑐 and 𝑤⊤𝜙 𝜋 ≤ 𝑐 for all 𝜋 ≠ 𝜋∗.

So we can use a maximal marginal classifier with only one positive sample!
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subject to 𝑤⊤𝜙 𝜋∗ − 𝑤⊤𝜙 𝜋 ≥ 1

minimize
𝑤

 𝑤 2

for all 𝜋 ≠ 𝜋∗



Maximum margin planning (MMP)
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subject to 𝑤⊤𝜙 𝜋∗ − 𝑤⊤𝜙 𝜋 ≥ 1 for all 𝜋 ≠ 𝜋∗

minimize
𝑤

 𝑤 2

Let’s allow the expert to be suboptimal by adding a slack variable.



Maximum margin planning (MMP)
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subject to 𝑤⊤𝜙 𝜋∗ − 𝑤⊤𝜙 𝜋 ≥ 1 − 𝑣 for all 𝜋 ≠ 𝜋∗

minimize
𝑤,𝑣

 𝑤 2 + 𝐶𝑣

Let’s allow the expert to be suboptimal by adding a slack variable.



Maximum margin planning (MMP)
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subject to 𝑤⊤𝜙 𝜋∗ − 𝑤⊤𝜙 𝜋 ≥ 1 − 𝑣 + 𝑑 𝜋∗, 𝜋 for all 𝜋 ≠ 𝜋∗

minimize
𝑤,𝑣

 𝑤 2 + 𝐶𝑣

Let’s allow the expert to be suboptimal by adding a slack variable.

We could also be more tolerant to the policies that are similar to 𝜋∗.



Today…

• Imitation learning

• Inverse reinforcement learning (IRL)
• Apprenticeship learning

• Maximum margin planning

• Max-Ent IRL
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Max-Ent IRL

Assumption: Experts are noisily optimal, i.e., the probability that 
they demonstrate trajectory 𝜉 is:

𝑃 𝜉 ∣ 𝑤 =
exp 𝑤⊤𝜙 𝜉

׬ exp 𝑤⊤𝜙 𝜉′ 𝑑𝜉′

where 𝜙 𝜉  is the cumulative discounted features of trajectory 𝜉.
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Max-Ent IRL

Key insight: Find a probability distribution 𝑃∗ over trajectories 
such that the feature expectation matches the expert features, i.e.,

𝔼𝜉∼𝑃∗ 𝜉 𝜙 𝜉 = 𝜙 𝜋∗

But which distribution?

CSCI 699: Robot Learning - Lecture 5 49



Principle of maximum entropy

“When estimating the probability distribution, you should select 
that distribution which leaves you the largest remaining uncertainty 
consistent with your constraints. That way you have not 
introduced any additional assumptions or biases.”
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Max-Ent IRL

max
𝑃

 − ׬ 𝑃 𝜉 log 𝑃 𝜉 𝑑𝜉
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subject to ׬ 𝑃 𝜉 𝜙 𝜉 𝑑𝜉 = 𝜙 𝜋∗

׬ 𝑃 𝜉 𝑑𝜉 = 1

𝑃 𝜉 ≥ 0, ∀𝜉

Ignore the inequality constraints 
for now. Later, we will show the 
solution already satisfies them. 



Max-Ent IRL

max
𝑃

 − ׬ 𝑃 𝜉 log 𝑃 𝜉 𝑑𝜉
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subject to ׬ 𝑃 𝜉 𝜙 𝜉 𝑑𝜉 = 𝜙 𝜋∗

׬ 𝑃 𝜉 𝑑𝜉 = 1

Write the Lagrangian using multipliers 𝜆 and 𝜈:

𝐿 𝑃, 𝜆, 𝜈 = ׬− 𝑃 𝜉 log 𝑃 𝜉 𝑑𝜉 + 𝜆⊤ ׬ 𝑃 𝜉 𝜙 𝜉 𝑑𝜉 − 𝜙 𝜋∗ + 𝜈 ׬ 𝑃 𝜉 𝑑𝜉 − 1 

We now need to solve min
𝜆,𝜈

max
𝑃

𝐿 𝑃, 𝜆, 𝜈 .



Solve for 𝑃∗

𝐿 𝑃, 𝜆, 𝜈 = ׬− 𝑃 𝜉 log 𝑃 𝜉 𝑑𝜉 + 𝜆⊤ ׬ 𝑃 𝜉 𝜙 𝜉 𝑑𝜉 − 𝜙 𝜋∗ + 𝜈 ׬ 𝑃 𝜉 𝑑𝜉 − 1 
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𝐿 𝑃, 𝜆, 𝜈 = ׬ −𝑃 𝜉 log 𝑃 𝜉 + 𝜆⊤𝑃 𝜉 𝜙 𝜉 + 𝜈𝑃 𝜉 𝑑𝜉 − 𝜆⊤𝜙 𝜋∗ − 𝜈

𝐹 𝜉, 𝑃 𝜉 , ሶ𝑃(𝜉) doesn’t depend on P

Euler-Lagrange Equation

𝑃 is a local optimum of ׬ 𝐹 𝜉, 𝑃 𝜉 , ሶ𝑃(𝜉) 𝑑𝜉 if and only if:

𝜕𝐹

𝜕𝑃
𝜉, 𝑃 𝜉 , ሶ𝑃 𝜉 =

𝑑

𝑑𝜉

𝜕𝐹

𝜕 ሶ𝑃
𝜉, 𝑃 𝜉 , ሶ𝑃 𝜉

This is zero!



Solve for 𝑃∗

𝜕𝐹

𝜕𝑃
𝜉, 𝑃 𝜉 , ሶ𝑃 𝜉 = 0

𝜕

𝜕𝑃
−𝑃 𝜉 log 𝑃 𝜉 + 𝜆⊤𝑃 𝜉 𝜙 𝜉 + 𝜈𝑃 𝜉 = 0

log 𝑃∗ 𝜉 = −1 + 𝜆⊤𝜙 𝜉 + 𝜈

𝑃∗ 𝜉 = 𝑒𝜆⊤𝜙 𝜉 +𝜈−1
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Back to Lagrangian
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𝐿 𝑃∗, 𝜆, 𝜈 = ׬ −𝑃∗ 𝜉 log 𝑃∗ 𝜉 + 𝜆⊤𝑃∗ 𝜉 𝜙 𝜉 + 𝜈𝑃∗ 𝜉 𝑑𝜉 − 𝜆⊤𝜙 𝜋∗ − 𝜈

= ׬ ቀ

ቁ

−𝑒𝜆⊤𝜙 𝜉 +𝜈−1 𝜆⊤𝜙 𝜉 + 𝜈 − 1 + 𝜆⊤𝑒𝜆⊤𝜙 𝜉 +𝜈−1𝜙 𝜉

+ 𝜈𝑒𝜆⊤𝜙 𝜉 +𝜈−1 𝑑𝜉 − 𝜆⊤𝜙 𝜋∗ − 𝜈

= ׬ 𝑒𝜆⊤𝜙 𝜉 +𝜈−1𝑑𝜉 − 𝜆⊤𝜙 𝜋∗ − 𝜈

𝑃∗ 𝜉 = 𝑒𝜆⊤𝜙 𝜉 +𝜈−1



Solve for 𝜈∗
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𝐿 𝑃∗, 𝜆, 𝜈 = ׬ 𝑒𝜆⊤𝜙 𝜉 +𝜈−1𝑑𝜉 − 𝜆⊤𝜙 𝜋∗ − 𝜈

Having solved for 𝑃∗, we now need to solve min
𝜆,𝜈

𝐿 𝑃∗, 𝜆, 𝜈 .

𝜕𝐿

𝜕𝜈
𝑃∗, 𝜆, 𝑣 = 0 ⇒ 𝑒𝜈∗

׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉 − 1 = 0

𝑒−𝜈∗
= ׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉

𝜈∗ = − log ׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉 

𝑃∗ 𝜉 = 𝑒𝜆⊤𝜙 𝜉 +𝜈−1



Back to 𝑃∗

CSCI 699: Robot Learning - Lecture 5 57

𝑃∗ 𝜉 = 𝑒𝜆⊤𝜙 𝜉 +𝜈−1

𝜈∗ = − log ׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉 

𝑃∗ 𝜉 = 𝑒𝜆⊤𝜙 𝜉 +𝜈∗−1

𝑃∗ 𝜉 = 𝑒𝜆⊤𝜙 𝜉 −log ׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉 −1

𝑃∗ 𝜉 =
𝑒𝜆⊤𝜙 𝜉

𝑒log ׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉 +1

𝑃∗ 𝜉 =
𝑒𝜆⊤𝜙 𝜉

׬ 𝑒𝜆⊤𝜙 𝜉 𝑑𝜉

Remember this?
It turns out 𝑤∗ = 𝜆∗.



Back to Lagrangian
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𝑃∗ 𝜉 = 𝑒𝜆⊤𝜙 𝜉 +𝜈−1

𝜈∗ = − log ׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉 

𝐿 𝑃∗, 𝜆, 𝜈∗ = ׬ 𝑒𝜆⊤𝜙 𝜉 +𝜈∗−1𝑑𝜉 − 𝜆⊤𝜙 𝜋∗ − 𝜈∗

𝐿 𝑃∗, 𝜆, 𝜈∗ = ׬ 𝑒𝜆⊤𝜙 𝜉 −log ׬ 𝑒𝜆⊤𝜙 𝜉′ −1𝑑𝜉′ −1𝑑𝜉 − 𝜆⊤𝜙 𝜋∗ + log ׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉 

𝐿 𝑃∗, 𝜆, 𝜈∗ = ׬
𝑒𝜆⊤𝜙 𝜉

׬ 𝑒𝜆⊤𝜙 𝜉′
𝑑𝜉′

𝑑𝜉 − 𝜆⊤𝜙 𝜋∗ + log ׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉 

𝐿 𝑃∗, 𝜆, 𝜈∗ = 1 − 𝜆⊤𝜙 𝜋∗ + log ׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉 



Solve for 𝜆∗ = 𝑤∗
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𝑑𝐿

𝑑𝜆
𝑃∗, 𝜆, 𝜈∗ =

𝑑

𝑑𝜆
1 − 𝜆⊤𝜙 𝜋∗ + log ׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉 

=
𝑑

𝑑𝜆
log ׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉 − 𝜙 𝜋∗

=

𝑑
𝑑𝜆

׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉

׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉
− 𝜙 𝜋∗

We want to minimize 𝐿 𝑃∗, 𝜆, 𝜈∗ .



Solve for 𝜆∗ = 𝑤∗
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𝑑𝐿

𝑑𝜆
𝑃∗, 𝜆, 𝜈∗ =

𝑑
𝑑𝜆

׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉

׬ 𝑒𝜆⊤𝜙 𝜉 −1𝑑𝜉
− 𝜙 𝜋∗

=
׬

𝑑
𝑑𝜆

𝑒𝜆⊤𝜙 𝜉 𝑑𝜉

׬ 𝑒𝜆⊤𝜙 𝜉 𝑑𝜉
− 𝜙 𝜋∗

=
׬ 𝜙 𝜉 𝑒𝜆⊤𝜙 𝜉 𝑑𝜉

׬ 𝑒𝜆⊤𝜙 𝜉 𝑑𝜉
− 𝜙 𝜋∗

This is just 𝑃 𝜉 ∣ 𝑤



Solve for 𝜆∗ = 𝑤∗
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𝑑𝐿

𝑑𝑤
𝑃∗, 𝑤, 𝜈∗ = ׬ 𝜙 𝜉 𝑃 𝜉 ∣ 𝑤 𝑑𝜉 − 𝜙 𝜋∗

= 𝔼𝜉∼𝑃 𝜉∣𝑤 𝜙 𝜉 − 𝜙 𝜋∗

This gives an algorithm:

1. Initialize 𝑤

2. Perform RL to learn a policy that optimizes the reward with 𝑤

3. Roll out the learned policy to compute:

𝑤 ← 𝑤 − 𝔼𝜉∼𝑃 𝜉∣𝑤 𝜙 𝜉 − 𝜙 𝜋∗

4. Repeat from step 2



Today…

• Imitation learning

• Inverse reinforcement learning (IRL)
• Apprenticeship learning

• Maximum margin planning

• Max-Ent IRL
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Next time…

• Learning from human feedback
• Suboptimal demonstrations

• Pairwise comparisons

• …
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