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Abstract— Training robots to perform complex control tasks
from high-dimensional pixel input using reinforcement learning
(RL) is sample-inefficient, because image observations are com-
prised primarily of task-irrelevant information. By contrast,
humans are able to visually attend to task-relevant objects
and areas. Based on this insight, we introduce Visual Saliency-
Guided Reinforcement Learning (ViSaRL). Using ViSaRL to
learn visual representations significantly improves the success
rate, sample efficiency, and generalization of an RL agent on
diverse tasks including DeepMind Control benchmark, robot
manipulation in simulation and on a real robot. We present
approaches for incorporating saliency into both CNN and
Transformer-based encoders. We show that visual represen-
tations learned using ViSaRL are robust to various sources
of visual perturbations including perceptual noise and scene
variations. ViSaRL nearly doubles success rate on the real-robot
tasks compared to the baseline which does not use saliency.

I. INTRODUCTION
Studies in neuroscience [1] show that humans utilize se-
lective attention to focus on task-relevant information for
efficiently processing and understanding complex visual
scenes [2]. We employ selective attention when performing
everyday pick-and-place tasks to identify the target objects,
focus on the grasp points, and execute precise hand-eye
coordination. We hypothesize that saliency maps capturing
human visual attention is a useful signal to process visual
observations for AI agents. In this paper, we investigate
whether human visual attention helps agents perform tasks.

A key ingredient in solving visual control tasks is to
learn visual representations that capture useful features of the
sensory input to simplify the decision-making process. Many
works in the deep reinforcement learning (RL) community
have proposed to learn such representations through vari-
ous self-supervised objectives including contrastive learning
[3] and data augmentation [4]. By contrast, we focus on
self-supervision using saliency as additional human domain
knowledge to inform the representation of task-relevant fea-
tures in the visual input while filtering out perceptual noise.

We present Visual Saliency Reinforcement Learning (ViS-
aRL), a general approach for incorporating human-annotated
saliency maps as an inductive bias for learned visual rep-
resentations. The key idea of ViSaRL is to train a visual
encoder using both RGB and saliency inputs and an RL
policy that operates over lower dimensional image repre-
sentations as shown in Figure 1. By using a multimodal
autoencoder trained using a self-supervised objective, our
learned representations attend to the most salient parts of
an image for downstream task learning making them robust
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Fig. 1: ViSaRL trains a saliency prediction model from a few
human-annotated saliency maps. This model is used to augment an
offline image dataset with saliency. A visual encoder is pretrained
with the dataset and used during downstream policy learning to
generate latent representations of the agent’s observations.

to visual distractors. To circumvent the expensive process
of manually annotating saliency maps, we train a state-of-
the-art saliency predictor using only a few human-annotated
examples to pseudo-label RGB observations with saliency.

We evaluate ViSaRL on a diverse set of challenging
continuous control tasks in the DeepMind Control (DMC)
suite [5] and robot manipulation tasks in Meta-World [6]
and a real robot. Our method improves in sample-efficiency
and robustness over state-of-the-art vision-based RL methods
across all environments. Remarkably, ViSaRL nearly doubles
the task success rate on a real-robot.

Our contributions can be summarized as follows:
1) We propose ViSaRL, a framework for incorporating

human-annotated saliency maps to learn robust repre-
sentations for visual control tasks;

2) We present approaches for utilizing saliency information
in both CNN and Transformer encoders; and

3) We conduct extensive experiments that demonstrate
ViSaRL consistently outperform prior state-of-the-art
methods for various visual control tasks both in sim-
ulation and on a real robot.

II. RELATED WORK
Different forms of human data can be leveraged when solving
control tasks. Researchers have created various interfaces to
collect different data modalities from humans such as reward
sketches [7], feature traces [8], scaled comparisons [9], and
abstract trajectories [10]. Attention saliency maps, in con-
trast, do not require humans to work with abstract concepts
like rewards and task features, and do not require watching
and comparing lengthy trajectories.

Saliency Maps. Saliency maps approximate which parts of
an image tend to attract human visual attention, correspond-
ing to where the human eye would likely fixate when viewing

mailto:anthony.liang@usc.edu


an image [11]. Saliency maps have been used in both com-
puter vision and machine learning for various applications
including activity recognition [12], question answering [13],
and object segmentation [14]. The explainable AI community
uses saliency maps to understand how a model is making its
predictions and to identify the most informative regions of
an image for a particular task [15], [16], [17]. Most existing
works explore using saliency maps only as tools for interpre-
tation [18], [19]. For example, Atrey et al. [18] and Rosynski
et al. [19] use saliency maps to rationalize and explain the
actions of RL agents in Atari games. Boyd et al. [20] show
saliency maps encoding prior human knowledge enable better
generalization of deep learning models.

Bertoin et al. [21] uses neural network saliency in a self-
supervised regularization objective to encourage better visual
representations. We do not use a model’s saliency, but rather
human saliency to identify salient regions of the input image
and distill this knowledge into the visual representation.

User Interfaces for Human Saliency. ViSaRL needs a
small number of human-annotated saliency maps to bootstrap
the saliency prediction network. Prior work used superpixel
segmentation [22] to first divide each image into segments,
and then asked humans to click on the segments that are
salient [17]. However, that method requires manually check-
ing and combining the segments that belong to the same
object before showing the images to annotators, burdening
system designers. As an alternative, Boyd et al. [23] used
interfaces where the annotators created binary masks by
simply clicking on images. We employ a similar but simpler
interface: an annotator clicks on the salient parts of the
image, and a Gaussian kernel is applied around selected
pixels to achieve smooth saliency maps shown in Figure 2.

Representation Learning for RL. Saliency maps are rep-
resentations of the environment that carry domain knowledge
about which regions of the visual input are important for
the downstream task. Such representations are crucial in
RL because they enable agents to tractably deal with high-
dimensional image observation spaces.

Prior works have shown self-supervised learning with data
augmentation helps achieve good performance in image-
based RL. Contrastive Unsupervised RL (CURL) [3] em-
ploys a contrastive learning objective as an auxiliary loss to
learn representations for off-policy RL. RL with Augmented
Data (RAD) [4] use simple image augmentations such as
random cropping and color jittering as regularization to
learn representations invariant to visual perturbations. ViS-
aRL does not use data augmentation directly in the value
function or policy update. Instead, saliency augmentation is
introduced during the visual encoder pretraining phase.

Nair et al. [24] and Karamcheti et al. [25] propose
to combine internet scale language and vision datasets to
learn visual representations applicable across all robot tasks.
While they focus on learning general visual representations,
ViSaRL augments small task-specific datasets with saliency
information to improve pretrained visual representations.

Sax et al. [26] demonstrated that mid-level visual rep-
resentations such as surface normals or depth predictions

Fig. 2: Annotation Interface. Custom click-based saliency anno-
tation interface. Each click generates a Gaussian centered at the
clicked coordinate with some variance. Warmer colors denote more
salient regions such the drawer handle and the robot’s end-effector.

from RGB images removes unimportant information and
captures useful invariances about the visual world leading
to better success on downstream RL tasks. Similar to Sax
et al. [26], ViSaRL utilizes saliency maps as a mid-level
feature. However, we empirically show that our approach
for incorporating the saliency information into the visual
representation improves task performance over other mid-
level features including depth and surface normals.

III. VISUAL SALIENCY-GUIDED RL
We propose ViSaRL, a simple approach for incorporating
human-annotated saliency to learn representations for visual
control tasks. ViSaRL can be implemented on top of any
standard RL algorithm for learning a policy. It aims to
learn representations that encode useful task-specific induc-
tive biases from human saliency maps. ViSaRL consists of
three learned components: a saliency predictor gφ , an image
encoder fθ , and a policy network πψ shown in Figure 1. We
will elaborate on each component in the following sections.

Saliency Predictor. Saliency maps highlight regions in an
image likely to capture human attention or are considered
crucial for a given task. Having a human expert annotate
saliency maps for every image observation is impractical and
not scalable to complex domains. To alleviate the burden of
manual annotations, we propose to learn a saliency network
using only a few hand-annotated examples of saliency maps
collected using a custom user interface.

Formally, given an input RGB image observation, I ∈
RH×W×C, a saliency predictor gφ maps an input image I
to a continuous saliency map M = gφ (I) ∈ [0,1]H×W high-
lighting important parts of the image for the downstream
task. We use a state-of-the-art saliency model, Pixel-wise
Contextual Attention network (PiCANet) [28]. PiCANet uses
global and local pixel-wise attention modules to selectively
attend to informative context. Global attention can attend to
backgrounds for foreground objects while local attention can
attend to regions that have similar appearance. The mixture
of attention at different scales allows for more homogeneous
and consistent saliency predictions. We emphasize that our
method is agnostic to the choice of saliency model.

Pretraining Visual Representation. We use our trained
gφ to pseudo-label an offline image dataset collected using
any behavior policy (random, replay buffer, expert demon-



Fig. 3: ViSaRL. We pretrain a MultiMAE [27] Transformer on a dataset of paired images and saliency maps. MultiMAE employs a self-
supervised objective in which masked patches for both input modalities are reconstructed given only the visible patches. The pretrained
model is frozen and used for extracting representations during task learning. There is no input masking during downstream RL.

Algorithm 1 Visual Saliency-Guided RL

1: Input: env, φ ,ψ,θ randomly initialized parameters
2: Collect image dataset D with any behavioral policy πB
3: Annotate N random frames from D with saliency
4: Train gφ on {(I,M)}N

i=1 using PiCANet loss
5: Annotate the full dataset D = {(I,gφ (I))}N

i=1
6: Train fθ using masked reconstruction
7: for every environment step do ▷ RL Training
8: Select action a ∼ πψ( fθ (o,gφ (o)))
9: Optimize LRL with respect to ψ

strations, etc.) with saliency maps. We then use the paired
image and saliency dataset to pretrain an image encoder, fθ .
We experiment with two models for our backbone visual
encoder, CNN and Transformer, and investigate different
techniques for augmenting each with saliency input. To add
saliency to a CNN, we can use saliency as a continuous mask
or simply add it as an additional channel per pixel. For a
Transformer encoder, we pretrain the model with saliency as
an additional input using a masked reconstruction objective.

Masked autoencoders (MAE) [29] are an effective and
scalable approach for learning visual representations. MAE
masks out random patches of an image and reconstructs
the masked patches using a Vision Transformer (ViT) [30].
An image I ∈ RH×W×C is processed into a sequence of
2D patches h ∈ RK×(P2C) where P is the patch size and
K = HW/P2 is the number of patches. A subset of these
patches are randomly masked out with a masking ratio of m.
Only the visible, unmasked patches are used as input to the
ViT encoder. Masking reduces the input sequence length and
encourages learning global, contextualized representations.

The image patches are embedded via a linear projection
and added to positional embeddings. The resulting tokens are
processed via a series of Transformers. Finally, a ViT decoder
reconstructs the original input by processing all of the tokens
including the encoded visible patches and placeholder mask
tokens. Following He et al. [29], we set a high masking ratio
m=0.75 and a heavy-encoder, light-decoder architecture.

MultiMAE for Encoding Saliency. The standard MAE
architecture is limited to processing just RGB modality.

We propose to incorporate saliency using the MultiMAE
[27] architecture shown in Figure 3. MultiMAE extends
MAE to encode multiple input modalities in a way that
these modalities are contributing synergistically to the result-
ing representation. Specifically, MultiMAE uses a different
linear projection and decoder for each input modality. A
cross attention layer is used in each decoder to incorporate
information from the encoded tokens of other modalities.
Crucially, MultiMAE’s pretraining objective requires the
model to perform well in both the original MAE objective of
RGB in-painting and cross-modal reconstruction, resulting in
a stronger cross-modal visual representation.

Downstream Policy Learning. After pretraining the Mul-
tiMAE model, we freeze the encoder and use it to compute
latent representations of environment observations for policy
training. ViSaRL is not only compatible with online RL
algorithms such as Soft-Actor Critic (SAC) [31] in which
the agent learns through environment interactions but also
imitation learning from expert demonstrations. Image inputs
are not masked during policy learning. We average the patch
embeddings to generate a global image representation. The
full procedure for ViSaRL is summarized in Algorithm 1.

IV. EXPERIMENT SETUP
To demonstrate the effectiveness of using human-annotated
saliency information to enhance visual representations for
task learning, we show quantitative results of our approach
with two different encoder backbones, CNN and Trans-
former, across multiple simulated environments including the
Meta-World manipulation [6] and DMC benchmarks [21]
and real-robot manipulation with a Kinova Jaco 2 arm.
We train the downstream policy using SAC [31] for the
simulation experiments and behavioral cloning with expert
demonstrations for the real robot experiments. 1

Saliency Map Annotation. We created a simple user
interface to collect saliency annotations shown in Figure 2.
An annotator clicks on the pixels in the image that they think
are relevant for performing the given downstream task. The

1The code implementation for reproducing the results and additional
analysis can be found on: https://aliang8.github.io/visarl site.
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Fig. 4: Learning curves for four robot manipulation tasks in Meta-World evaluated by task success rate. (Top) CNN encoder methods.
(Bottom) Transformer encoder methods. We select tasks that require manipulating small objects with different motions such as a pushing,
pulling, and reaching. The solid lines represent the mean and shaded region the standard error across three seeds.

interface creates a Gaussian centered around the clicked pixel
with σ = 10 on an input image of resolution 256×256×3.

V. SIMULATION EXPERIMENTS
Figure 4 and Table I summarize our main findings on 4
Meta-World robot manipulation tasks and 5 DMC tasks using
CNN and Transformer backbones. We compare against two
state-of-the-art methods for visual representation learning:
CURL [3], a contrastive representation learning method and
RAD [4], a method to combine various image augmentations
to induce visual invariances in the learned representations.

Saliency input improves downstream task success
rates. Incorporating saliency improves the task success rate
in Meta-World using CNN and Transformer encoders by 13%
and 18% respectively over the next best baseline. For DMC
environments, we observe a 256% relative improvement in
average return when using saliency input. Our Transformer
encoder results in an average 4% relative improvement in
environment returns across all tasks over the next best
baseline with a 7.5% improvement in Cartpole Swing.
A. CNN Encoder
We follow the CNN implementation used in prior work [4],
[21] and compare several methods for incorporating saliency.
In each approach, the CNN encoder and policy are trained
jointly but take different inputs.

A saliency channel achieves the best task success rate
for CNN encoder. In Table I, we find that naive ways of
utilizing saliency, such as using saliency directly as input the
policy (Saliency), are unable to achieve good performance
on the task. We hypothesize that the saliency map alone
is not sufficient to infer the exact orientation of the end-
effector position critical for fine control. Supporting this
hypothesis, we find that using saliency to mask the RGB
observation (RGB × Saliency) achieves higher task success

rate than Saliency, but is still worse than providing the
raw RGB input (RGB). Although masking should help the
encoder identify the important image features, it may still
be nontrivial for the encoder to differentiate between simi-
larly masked observations. Lastly, we find that incorporating
saliency as an additional channel to the RGB input (RGB(S))
improves task success rate by more than 10% across all
tasks. We hypothesize that the CNN encoder is able to utilize
the saliency information to more effectively associate the
observed rewards to the relevant features in the image.
B. MultiMAE Transformer
We compare MultiMAE representations pretrained with RGB
only (RGB) and both RGB and saliency (RGB+Saliency
(PO), RGB+Saliency (Ours)). RGB+Saliency (PO) uses
saliency only during pretraining while RGB+Saliency
(Ours) uses saliency in both pretraining and downstream RL.

Training encoder with saliency improves RGB-only
success rates at inference time. Even without saliency
input during downstream RL, using saliency as an additional
input modality during pretraining still improves downstream
performance on 3 of the 4 tasks. Except for the Reach
task, where performances are similar, RGB+Saliency (PO)
achieves better success rate than RGB, with an average
absolute gain of 10% across tasks.

Using saliency in both pretraining and inference yields
the best performance. We compare the full ViSaRL method
(RGB+Saliency (Ours)) to pretraining using only the RGB
images (RGB) in Tables I demonstrating that multimodal
pretraining with saliency information significantly outper-
forms single modality pretraining by at least a 10% margin
across all tasks. Notably, RGB achieves only 19% success
on Faucet Open, while our approach solves the task
with 62% success rate. Using saliency as an input for both



Meta-World CNN MMAE

RGB Saliency RGB × Saliency RGB(S) RGB RGB+Saliency (PO) RGB+Saliency (Ours)
Reach 0.40±0.12 0.04±0.02 0.38±0.05 0.52±0.08 0.50±0.02 0.48±0.06 0.620.620.62±0.06
Drawer Open 0.18±0.25 0.04±0.02 0.10±0.04 0.48±0.06 0.84±0.02 0.88±0.04 0.940.940.94±0.04
Faucet Open 0.82±0.02 0.02±0.02 0.72±0.16 0.860.860.86±0.02 0.18±0.05 0.40±0.20 0.62±0.16
Door Open 0.42±0.04 0.10±0.06 0.22±0.10 0.48±0.06 0.36±0.18 0.52±0.08 0.640.640.64±0.02

Average 0.46±0.11 0.05±0.03 0.36±0.08 0.58±0.05 0.48±0.12 0.57±0.10 0.650.650.65±0.07

TABLE I: Success rate on four Meta-World manipulation tasks averaged across 50 rollouts and 3 seeds for the CNN and MultiMAE
(MMAE) visual encoder backbones. Text in maroon indicates the best performing method per task.

DMC-GB CURL RAD RGB
+Saliency (Ours)

c
o
l
o
r

Walker Walk 645±55 636±33 823823823±55
Cartpole Swing 668±74 763±29 870870870±21

Ball Catch 565±160 727±87 962962962±14
Finger Spin 781±139 789±160 823823823±102

v
i
d
e
o

Walker Walk 572±121 595±85 756756756±42
Cartpole Swing 418±72 434±58 730730730±32

Ball Catch 402±169 520±44 802802802±78
Finger Spin 612±55 588±82 702702702±83

TABLE II: Average return of ViSaRL and baseline methods on
the color and video environments from DMC-GB.

pretraining and downstream RL (RGB+Saliency (Ours)) im-
proves task success rate over RGB+Saliency (PO) because
there are new observations during online training that were
not in the pretraining dataset.

ViSaRL representations generalize to unseen envi-
ronments. We evaluate the generalizability of our learned
representations on the challenging random colors and
video backgrounds benchmark from DMControl-GB [32]. In
DMControl-GB, agents trained in the original environment
are evaluated on their generalization to the same environment
with visually perturbed backgrounds using randomized color
and video overlays. ViSaRL significantly outperforms the
baselines across all tasks as shown in Table II, with an
average 19% and 35% relative improvement respectively for
the color and video settings.

Human-annotated saliency improves performance
compared to depth and surface normals. We conduct
ablation experiments to compare saliency versus other mid-
level input modalities such as depth and surface normals
proposed by Sax et al. [26]. We substitute saliency with these
other modalities as input to the MultiMAE. In Table III,
we observe that neither depth nor surface normal features
alone improves task success over just using RGB image
input. By contrast, adding saliency as an additional modality
consistently improves task success suggesting that human-
annotated saliency information can help learn better visual
representations compared to other input modalities.

VI. REAL ROBOT EXPERIMENTS
We use a Kinova Jaco 2 (6-DoF) robot arm with a 1-DoF
gripper. The observation space consists of a front-view image
(224×224×3) from a Logitech webcam and proprioceptive
information. We consider four tabletop manipulation tasks
shown in Figure 5. In two of these tasks, we purposefully
include distractor objects to evaluate the robustness of our
learned representations to scene variations. We collected 10
demonstrations per task, resulting in an offline imitation
learning dataset of around 10,000 transitions.

Saliency RGB RGB + Depth RGB + SN

Reach
✗ 0.50±0.02 0.43±0.07 0.46±0.04
✓ 0.620.620.62±0.06 0.580.580.58±0.04 0.640.640.64±0.06

Drawer
Open

✗ 0.82±0.02 0.76±0.06 0.80±0.04
✓ 0.940.940.94±0.04 0.900.900.90±0.04 0.920.920.92±0.04

Faucet
Open

✗ 0.18±0.04 0.22±0.04 0.24±0.04
✓ 0.620.620.62±0.16 0.540.540.54±0.06 0.580.580.58±0.10

Door
Open

✗ 0.36±0.18 0.28±0.14 0.34±0.10
✓ 0.640.640.64±0.02 0.620.620.62±0.04 0.580.580.58±0.04

TABLE III: Human-annotated saliency versus depth and surface
normals (SN) as input modalities to MultiMAE model.

Fig. 5: Evaluation Tasks. Four Meta-World (top) simulation tasks
and four real-robot tabletop manipulation tasks (bottom).

For each task, 10 randomly sampled frames are hand-
annotated with saliency. Even with real-world images, only
a small number of annotated frames are required to learn a
good saliency predictor. We train an imitation learning policy
by minimizing the mean-squared error between predicted
end-effector pose and expert actions. We use a recurrent
policy to encode history information and a 2-layer MLP to
predict continuous actions.

ViSaRL scales to real-robot tasks and is robust to
distractor objects. Videos of evaluation trajectories for each
task can be found on the project website. Table IV reports
the task success rates on 10 evaluation rollouts. Even on
the easier Pick Apple task, using saliency augmented
representations, RGB+Saliency, improves the success rate
over RGB. On tasks with distractor objects and longer-
horizon tasks such as Put Apple in Bowl, saliency-
augmented representations nearly double the success rate.

VII. CONCLUSION
We proposed to use human-annotated saliency as an addi-
tional input modality for solving challenging visual robot
control tasks. We present a simple approach, ViSaRL, to
utilize saliency to learn robust image representations enabling
more sample-efficient and generalizable policy learning.

Limitations and Future Work. One potential limitation
of our user interface is that it could be tedious to collect



MultiMAE Apple Red
Block

Bread
→ Plate

Apple
→ Bowl Cumulative

RGB 6/10 4/10 3/10 1/10 14/40
+Saliency 8/10 7/10 6/10 6/10 27/40

TABLE IV: Task success rates in real-world tabletop manipulation
tasks for RGB and RGB+Saliency with MultiMAE.

saliency annotations when scaling to more complex real
world applications or video saliency [33]. Future work could
investigate alternative interfaces that will enable collecting
more saliency data, e.g., area-based methods or by tracking
the eye gaze of the user [34].

One can further evaluate the generalizability of ViSaRL
on the recent benchmark, The Colosseum [35], a suite of
manipulation tasks design to measure the robustness of
trained robot policies against visual perturbations.

In this paper, we only considered static frame saliency
maps for single-object manipulation tasks. We plan to extend
our approach to handle longer-horizon multi-object tasks
using video saliency models [36] which can learn to encode
more flexible temporal saliency representations across a
sequence of frames. This extension could be implemented
by asking the human users to watch video clips of the
trajectories and annotate saliency over these clips.
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