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Abstract
Adaptive brain stimulation can treat neurological
conditions such as Parkinson’s disease and post-
stroke motor deficits by influencing abnormal neu-
ral activity. Because of patient heterogeneity, each
patient requires a unique stimulation policy to
achieve optimal neural responses. Model-free re-
inforcement learning (MFRL) holds promise in
learning effective policies for a variety of simi-
lar control tasks, but is limited in domains like
brain stimulation by a need for numerous costly
environment interactions. In this work we intro-
duce Coprocessor Actor Critic, a novel, model-
based reinforcement learning (MBRL) approach
for learning neural coprocessor policies for brain
stimulation. Our key insight is that coprocessor
policy learning is a combination of learning how
to act optimally in the world and learning how
to induce optimal actions in the world through
stimulation of an injured brain. We show that our
approach overcomes the limitations of traditional
MFRL methods in terms of sample efficiency and
task success and outperforms baseline MBRL ap-
proaches in a neurologically realistic model of an
injured brain.

1. Introduction
A neural coprocessor is a form of brain-computer interface
(BCI) that can transmit signals to and from the brain (Rao,
2019; Oehrn et al., 2023). These interfaces can be used
to treat a variety of neurological conditions by influenc-
ing abnormal neural activity (Lozano et al., 2019; Little
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et al., 2013b). In patients who suffer from conditions such
as Parkinson’s disease and dystonia, brain stimulation has
the ability to steer neural activity towards activity regions
which manifest in reduced disease symptoms (Hu & Stead,
2014; Groiss et al., 2009). Adaptive brain stimulation can be
employed not just to guide neural activity towards specific
activity patterns but can also aid impaired patients in accom-
plishing external task objectives (Bryan et al., 2022; Cunha
et al., 2015). Stroke patients are one patient population that
can benefit from this aspect of brain stimulation. Stroke
patients suffer injury to the brain that often results in loss of
motor control and an inability to complete basic tasks, such
as reaching for and grasping an object (Hatem et al., 2016).
Stroke patients often struggle with these seemingly simple
motor tasks due to stroke-induced lesions in the brain that
can interrupt the propagation of neurological signals within
and between cortical modules (Ingwersen et al., 2021; Choi
et al., 2023). Due to the resultant motor deficits, a patient
may recognize the target location and intend to move their
arm to the perceived position, but struggle to do so (Choi
et al., 2023). Adaptive brain stimulation exhibits potential
for reducing motor impairment and restoring lost function
via adaptive stimulation, enabling these patients to operate
more effectively in the world (Elias et al., 2018; Ganguly
et al., 2022).

In this work, we investigate the development of neural co-
processors to deliver adaptive brain stimulation for reha-
bilitation using an in silico model of brain injury. Neural
coprocessors rely on artificial intelligence techniques to
learn a brain stimulation policy that appropriately shapes
neural activity based upon the current state of the patient
(Rao, 2019). An effective coprocessor policy can compen-
sate for lost mobility and paretic motor deficits post-stroke
(Bryan et al., 2022). However, there are several challenges
in developing an effective coprocessor policy. Because of
the heterogeneity of patients’ brains, their disease manifesta-
tion, and the location of the stimuli, the optimal coprocessor
policy is unique for each patient (Visanji et al., 2022). Fur-
thermore, due to the complexity of the brain, closed-loop
coprocessor policies are difficult to hand-engineer (Oehrn
et al., 2023). Instead, individualized coprocessor policies
may be learned through interaction with the patient to en-
sure that the coprocessor aligns seamlessly with the unique
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Figure 1. Overview of our framework. We first learn the Q-function, Qψ , for world actions, a, via a biomechanically realistic simulator.
We then learn the mapping, F̂ ϕ

brain, from coprocessor actions, ā, to world actions. Simultaneously, we update Qψ to account for the altered
MDP.

characteristics of the patient’s brain and condition. Due to
the necessity for online learning, adaptive brain stimulation
poses a compelling paradigm which can benefit from the
application of reinforcement learning (RL) techniques.

Model-free reinforcement learning (MFRL) has shown
promise for learning high-quality policies in many different
control tasks that resemble brain stimulation (Huang, 2020).
However, MFRL often requires numerous environment inter-
actions to learn a sufficiently good policy. When stimulating
the brain, interactions with patients are costly, and thus,
this domain requires an approach which can quickly learn
a policy with few patient interactions. Moreover, inappro-
priate stimulation can produce negative side-effects such
as cognitive disturbances, dyskinesia, and mood changes,
further necessitating efficient learning algorithms (Ashmaig
et al., 2018; Buhmann et al., 2017). To this end, we intro-
duce a novel model-based reinforcement learning (MBRL)
approach for coprocessor stimulation that outperforms state-
of-the-art MFRL and MBRL approaches in terms of both
sample efficiency and task success.

Our key insight is that we can minimize online patient in-
teraction by breaking coprocessor policy learning into two
phases: 1) learning how to act optimally in the world, and
2) learning how to achieve optimal world actions via brain
stimulation. With access to a biomechanically realistic simu-
lator, we can learn the former without any patient interaction,
enabling us to focus online interactions on learning the map-
ping from coprocessor stimulations to world actions. By
separating these two components, we are able to improve
the sample efficiency and performance of the coprocessor.
An overview of our approach is presented in Figure 1. We
define world actions as the tangible movements performed

by the patient in their environment, distinguishing them
from actions (i.e., stimulations) initiated by the coprocessor.

To learn how to act optimally in the world, we rely on a
biomechanical simulator. Various physics based simula-
tors (e.g., Caggiano et al. (2022) and Delp et al. (2007))
have been developed that enable the physiologically realis-
tic simulation of human biomechanics. These simulations
are capable of modeling both complex human physiology
and dynamic environment interactions, such as the com-
plexities encountered in our example reaching task. We
leverage a biomechanical simulator to learn the value of a
human executing a world action (e.g., moving their arm) in
a given state (e.g., arm joint positions), for a given task ob-
jective (e.g., reaching a target location). That is, we employ
a simulator to learn the Q-function for world actions.

While the mechanisms involved in executing a world action
will be similar for every individual and can therefore be reli-
ably modeled in simulation, because of the complexity and
heterogeneity of the human brain, the effect of coprocessor
stimulation cannot be as readily predicted. Instead, we must
learn how to achieve optimal world actions via stimulation
in an online fashion. To efficiently learn how coproces-
sor stimulations map onto world actions, we leverage the
simulator-derived Q-function to guide stimulation sampling
during online learning, thus focusing model learning on
high-value regions of the world-action space. Because not
all world actions will necessarily be realizable by the injured
brain, the learned Q-function may be over-optimistic. To
solve this problem, we iteratively update the Q-function as
we learn the brain model. We demonstrate that this method
is orders of magnitude more efficient than learning a stim-
ulation policy from scratch via standard MFRL. Once this
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mapping is learned, our coprocessor policy selects stimu-
lations that produce world actions of maximum value, as
defined by the simulator-derived Q-function.

We evaluate our approach in standard continuous control
tasks as well as a novel, physiologically and neurologically
realistic stroke domain. We demonstrate that our approach
learns a better policy in fewer interactions compared to
baseline MFRL and MBRL approaches. Additionally, we
show that our approach is able to better aid the patient in
accomplishing a given task during the online learning phase
compared to baselines. With this work, we hope to set the
groundwork for implementing RL solutions for adaptive
brain stimulation and to pave the way for RL researchers to
further study this problem. We contribute the following:

1. A novel, model-based RL approach for learning a neu-
ral coprocessor policy for closed-loop adaptive brain
stimulation.

2. A physiologically and neurologically realistic RL
benchmark environment for adaptive brain stimulation
for stroke-relevant tasks.

3. Results showing improved sample efficiency and
higher training and evaluation reward relative to MFRL
and MBRL baselines.

2. Related Work
Current clinical applications of brain stimulation are open
loop, i.e., non-adaptive (Khanna et al., 2021; Ganguly et al.,
2022; Lu et al., 2020b). For instance, when selecting deep
brain stimulation (DBS) parameters for treating Parkinson’s
in clinical settings, the surgeon performs a trial and error
search to determine the set of stimulation parameters that
best treat patient symptoms (Ghasemi et al., 2018). How-
ever, propelled by advances in medical technology and a bet-
ter understanding of neurophysiological signals, closed-loop
coprocessors are emerging as a new and promising paradigm
(Frey et al., 2022). Closed-loop DBS relies on feedback sig-
nals either in the form of decoded brain readings or other
external state information to dynamically adjust stimula-
tion and deliver more precise interventions for patients. One
challenge in closed-loop brain stimulation is the formulation
of an effective control policy. Various methods have been
proposed to develop adaptive DBS policies based on patient
state information (Little et al., 2013a; Bronte-Stewart et al.,
2020; Oehrn et al., 2023). For instance, Little et al. (2013a)
proposed an approach that modulates stimulation parame-
ters based upon a user-defined threshold of local evoked
potentials. However, these manually crafted strategies often
fall short of capturing the intricate interplay between DBS
and the brain, and are difficult to personalize for individual
patients.

Reinforcement Learning for Brain Stimulation: An al-
ternative to hand-engineering policies is to leverage rein-
forcement learning techniques and learn a stimulation policy
via data collected through patient interactions (Schrum et al.,
2022; Gao et al., 2023; Coventry & Bartlett, 2023). Sev-
eral prior works have explored RL methods for closed-loop
brain stimulation (Lu et al., 2020a; Gao et al., 2023). Gao
et al. (2023) investigated employing a MFRL approach with
offline warm-starting to learn an effective stimulation pol-
icy for Parkinson’s patients. Similarly, Lu et al. (2020a)
proposed an actor-critic method and demonstrated its perfor-
mance in simulation. However, such MFRL methods require
a large number of patient interactions and thus, while effec-
tive in simulation, MFRL is difficult to deploy in the real
world (Dulac-Arnold et al., 2021).

Model Based Reinforcement Learning: An alternative
to MFRL is Model-Based Reinforcement Learning (MBRL).
MBRL reduces training time and improves learning effi-
ciency by utilizing a predictive dynamics model to learn an
effective policy (Valencia et al., 2023; Janner et al., 2021).
MBRL can typically be broken down into two steps: 1) dy-
namic model learning followed by 2) integration and plan-
ning (Moerland et al., 2022). The downside of MBRL is that
the model used for planning may be inaccurate, thus produc-
ing suboptimal plans (Abbeel et al., 2006). Our approach
minimizes this risk by leveraging a simulation-derived Q-
function to guide model learning and sample stimulations
that produce high-value environment actions, enabling us to
robustly and efficiently learn the brain dynamics model.

3. Problem Setup
We consider a world MDP with continuous state and action
spaces defined by the tuple (S, A, P , R). S defines the
state space andA the world action space. P : S ×A → ∆S
denotes the probability distribution of the next state when
action a is taken at state s. R : S × A → R, defines the
reward function.

Using this MDP to describe the world, we construct a second
MDP from the perspective of the coprocessor stimulations.
We assume there is some (potentially nondeterministic) map-
ping Fbrain : S×Ā → A that converts stimulations to the re-
sulting world actions in a state-dependent fashion. We then
define the augmented coprocessor MDP, M = (S, Ā, P ,R)
where Ā is the space of possible coprocessor stimulation
actions and the probability distribution over the next state is
defined in Equation (1).

P (s′ | s, ā) = E
[
P
(
s′ | s, Fbrain(s, ā)

)]
. (1)

In Equation (1) the expectation is over the stochasticity of
Fbrain.
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The objective is to learn a policy π(āt | st) that maximizes
the task reward in the coprocessor MDP, M . In simulation
we do not have access to the true brain model Fbrain, so we
use a learned model F̂ ϕ

brain, yielding a simulated version of
the coprocessor MDP, M̂ = (S, Ā, P̂ , R):

P̂ (s′ | s, ā) = E
[
P
(
s′ | s, F̂ ϕ

brain(s, ā)
)]
. (2)

4. Methodology

Algorithm 1 Coprocessor Actor Critic (CopAC)

Require: world MDP M = (S,A, P,R), s0 ∼ p0
Require: stimulation space Ā, injured brain Fbrain

1: initialize F̂ ϕ
brain

2: while access to simulator do
3: rollout π in M with experiences (s, a, r, s′)
4: fit Qψ(s, a) with Equation (4)
5: end while
6: while access to injured brain do
7: rollout π̄ in M with experiences (s, ā, r, s′)
8: a← Fbrain(s, ā)

9: fit F̂ ϕ
brain(s, ā) to a

10: while not converged do
11: rollout π̄ in M̂ with experiences (s, ā, r, s′)
12: â← F̂ ϕ

brain(s, ā)
13: fit Qψ(s, â) using Equation (6)
14: end while
15: end while
16: return π̄

We now present our approach for efficiently learning a
patient-specific coprocessor policy. Our key insight is that
we can separate the policy learning into learning the value
of world actions followed by learning to produce high-value
actions through stimulation.

Our approach is detailed in Algorithm 1 and consists of
three steps: 1) training a world-action value model, Qψ, 2)
training the brain model, F̂ ϕ

brain, and 3) updating the world-
action value model, Qψ. We alternate between steps 2 and
3 during online patient interaction.

4.1. Training world-action value model

Our goal is to leverage a biomechanical simulator to simu-
late the effect of a world action a on a world state s, given
the world MDP, M . Via this simulation, we can learn a
world policy π for how to act optimally in the world without
having to directly interact with the patient. We assume that
the optimal world policy is consistent across patients (e.g.,
though their neural activity may differ, patients will reach
the same target object by taking the same world actions) and
can be readily simulated via the biomechanical simulator.
We leverage this simulator to derive the Q-function, Qψ for

the optimal world policy, π (Algorithm 1 lines 2-5). The
world policy and Q-update are defined in Equation (3) and
Equation (4) respectively.

π(s) ≜ argmax
a∈A

E
[
Qψ

(
s, a

)]
(3)

Qψ(s, a)← R(s, a) + γmax
a′∈A

E
[
Qψ

(
s′, a′

)]
(4)

In our work, we use Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) to learn Qψ . However, this could be substituted
for any standard actor-critic or Q-learning approach. We
note that if a biomechanical simulator is not available for a
given task, the Q-function can be equivalently learned via
offline RL on a dataset of human biomechanical rollouts in
the environment. Importantly, through either a simulator or
offline data, our world-action value model learns from only
the biomechanical action output of a brain without relying
on access to neural activity of the brain itself.

4.2. Training Brain Model

Given the world policy defined in Equation (3), our objective
is to next learn to transform coprocessor actions into world
actions. Because of the heterogeneity and complexity of the
human brain, this process cannot be easily simulated and
must instead be learned online. We utilize the Q-function
learned in the previous step to guide online learning (Algo-
rithm 1 line 7). We aim to select stimulations ā that produce
world actions of maximum value, thereby focusing learning
of F̂ ϕ

brain on high-value regions of A. After each patient
interaction, we collect an experience, (s, ā, r, s′), which we
use to update F̂ ϕ

brain. Our sampling strategy is defined in
Equation (5). After each interaction, we retrain F̂ ϕ

brain based
upon our collected set of experiences (Algorithm 1 line 9).

π̄(s) ≜ argmax
ā∈Ā

E
[
Qψ

(
s, F̂ ϕ

brain(s, ā)
)]

(5)

We update the brain model via the mean-squared error loss
between the predicted world action, â and the ground truth
world action a. To effectively capture the complexity of
the relationship between stimulations and world actions, we
adopt a structure for F̂ ϕ

brain(s, ā) akin to the model presented
(Bryan et al., 2022). In Bryan et al. (2022), the authors lever-
age a neural network to learn the mapping from stimulations
to world actions from a monkey stroke dataset and show
that this model is able to effectively capture the effects of
stimulation on the brain

4.3. Updating world-action value model

The remaining issue to correct is that Equation (5) maxi-
mizes Qψ under the model F̂ ϕ

brain. Unfortunately, F̂ ϕ
brain will

not be a perfect model of the effects of stimulation and even
if it were, not all actions a ∈ A are necessarily realizable by
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stimulation ā. Thus, Qψ will be myopically over-optimistic
when predicting Q-values from the perspective of the copro-
cessor agent. To solve this problem, we must continuously
recalibrate the Q-function based on which actions can be
realized by stimulation. We perform this calibration in the
simulation MDP M̂ using the update in Equation (6). This
procedure is illustrated in Algorithm 1, lines 10-14.

Qψ(s, a)← r + γmax
ā∈Ā

E
[
Qψ(s′, F̂ ϕ

brain(s
′, ā))

]
(6)

In summary, we first train the world-action value model Qψ

offline, and then iteratively update it while also learning
F̂ ϕ

brain. Repeating the last two stages (training brain model
and updating world-action value model) enables us to learn
an effective coprocessor policy via minimal interactions
with the patient. We call our approach Coprocessor Actor
Critic (CopAC) and demonstrate its performance in compar-
ison with other RL methods in the next section.

5. Experiments
To aid a patient in accomplishing a task such as reaching
and grasping an object, a coprocessor must learn a patient-
specific stimulation policy in both an efficient and effective
manner. Thus, the goal of our experimental evaluation is
to 1) analyze the sample efficiency of CopAC compared
to state-of-the-art MFRL and MBRL baselines and 2)
investigate the reward attained by CopAC in comparison
to these baselines.

We compare CopAC to the popular MFRL approach, Soft
Actor-Critic (SAC) (Haarnoja et al., 2018), which combines
actor and critic networks with an entropy regularization
term, promoting exploration in a stable and efficient
manner. We choose to compare to SAC because actor-critic
algorithms have been employed in prior work in learning
a policy for closed-loop brain stimulation (Gao et al., 2023;
Lu et al., 2020a). We additionally baseline against the
MBRL approach Model-Based Policy Optimization (Janner
et al., 2021), which trains a model of the environment and
uses both real experience and simulated experience from
the model to update its policy. To assess the effectiveness
of our sampling policy and the importance of updating the
world-action value model, we conduct an ablation exper-
iment and compare against CopAC with a random sampling
policy (instead of maximizing the Q-function) as well as
CopAC without updating the world-action value model.

5.1. In Silico Evaluation Environments

Evaluating novel RL approaches for adaptive brain stimu-
lation in vivo is risky for patients and may waste patients’
valuable time if the approach is not successful. Thus, it is
common practice to first conduct experiments in silico (i.e.,
in simulation) to verify the efficacy of the approach before

Figure 2. This figure shows the brain stimulation domain for the
MyoSim Arm Reach task. We model the biomechanics of the
reaching tasks using the MyoSuite physics simulator (Caggiano
et al., 2022). The brain of a stroke patient is modeled via the
approach described by Michaels et al. (2020) and consists of the
anterior intraparietal area (AIP), ventral premotor cortex (F5), and
primary motor cortex (M1) modules. The coprocessor applies
stimulation to the motor cortex (M1) which modifies the world
action of the patient.

deploying in patients (Little et al., 2013a; Ashmaig et al.,
2018). In our experiments, we investigate the ability of our
method to restore the functionality of a synthetic injured
brain across a range of simulated control tasks. The goal in
each environment is to learn a coprocessor control policy to
provide the appropriate stimulation to the brain to recover
function and improve performance on the tasks post-injury.
Below we discuss the control tasks and the synthetic brain
models employed in our in silico experiments.

Physiologically and Neurologically Realistic Stroke Do-
main: Drawing on prior work in neurophysiological and
biomechanical modeling (Michaels et al., 2020; Caggiano
et al., 2022), we introduce a novel simulation domain for
evaluating adaptive brain stimulation policies in stroke pa-
tients (Figure 2). Such an in silico evaluation requires both
a neurologically realistic human brain model of a stroke
patient and a high-fidelity biomechanical simulator. To
simulate the biomechanics of the human musculoskeletal
system, we rely on MyoSuite (Caggiano et al., 2022), a
cutting-edge simulator for biomechanical control problems
based on the MuJoCo physics engine. The action space con-
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Figure 3. Evaluation results for CopAC compared to SAC, MBPO, and ablated CopAC. The dashed line represents the reward obtained by
the healthy brain.

sists of individual muscle activations and the observation
space consists of joint angles.

We simulate the injured brain of a stroke patient using the
cortical brain model developed by Michaels et al. (2020).
The backbone of this model is a recurrent neural network
that mimics the modular structure of the anatomical circuit
encompassing the visual cortex, the anterior intraparietal
area (AIP), the ventral premotor cortex (F5), and the primary
motor cortex (M1). Michaels et al. (2020) show that the
emergent neural dynamics of this model correspond to the
neural responses exhibited in a non-human primate’s brain.
Our insight is that we can employ standard RL techniques to
train this brain model to accomplish various physical tasks in
the MyoSuite biomechanical simulation, thus establishing
a realistic pipeline between brain motor control signals,
muscle kinematics, and biomechanical movement. Michaels
et al. (2020) additionally demonstrate that zeroing a portion
of the weights in the desired brain structure can reproduce
behavioral deficits caused by stroke-induced brain lesions.
By lesioning the simulated brain following the protocol
detailed by Michaels et al. (2020), we induce stroke-like
neurological and physiological behavior.

This method can be employed to simulate stroke patient
control strategies across various functional benchmark tasks
(e.g., in-hand object manipulation, object grasping, ambu-
lation, visual-spatial acuity, etc.). We choose to evaluate
CopAC on a reaching task that requires goal-directed func-
tional movement (Figure 2). Such spatial reaching tasks,
clinically known as task-related reaching training, are com-

mon benchmark tasks in which stroke patients often exhibit
suboptimal control strategies (Thielman et al., 2004). We
also evaluate CopAC on a spatial pose task in which the goal
is to move the fingers to target locations. This task requires
fine motor skills and emulates activities such as grasping an
object that can be challenging for stroke patients to execute.
(Buhmann et al., 2017).

Given a neurophysiologically realistic model of a stroke
patient, the last step is to simulate the effects of closed-
loop stimulation on the lesioned brain. Bryan et al. (2022)
introduce a method to spatially and temporally simulate
brain stimulation in the primary motor cortex to approximate
the effect of in vivo stimulation. We rely on this approach to
simulate the coprocessor’s effect on a stroke patient’s brain.

Standard Continuous Control Tasks: We additionally
evaluate CopAC on a variety of standard continuous control
tasks from the OpenAI Gym benchmark suite (Brockman
et al., 2016). Although the nature of these tasks is distinct
from the intricate control of human movement that is typical
of adaptive brain stimulation tasks, our objective in scruti-
nizing our approach within these domains is twofold: firstly,
to showcase its adaptability in handling a variety of com-
plex tasks with varying state and action space dimensions,
and secondly, to provide a benchmark comparison against
previous approaches in well-established domains.

For OpenAI Gym benchmark tasks, we simulate a control
policy generated by the brain of a stroke patient by first
training a neural network policy using standard RL tech-
niques to solve each Gym environment. We then “injure”
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the policy by zeroing random weights between two hidden
layers in the network. Coprocessor stimulation is applied
by additively modifying the values of randomly selected
neurons in the layer following lesion.

5.2. Evaluation Reward

Figure 3 shows a comparison of the evaluation reward after
each episode of online training for each of the approaches.
The dashed line represents the performance of an unaffected
or “healthy” brain, without any lesion. We note that we do
not necessarily expect a stimulation policy to be capable
of achieving healthy performance, as the severity of the
lesion may limit the brain’s ability to reach healthy-level
performance. Instead, the primary objective is to provide
stimulation to assist the patient in attaining a reward as close
to a healthy level as possible.

We average our results across a set of injuries ranging from
0% to 100% lesion of the motor cortex for 25 episodes of
online interaction. We limit the number of episodes to 25
as requiring a stroke patient to perform a greater number of
task repetitions would likely be too physically and mentally
demanding. Despite this tight sampling constraint, CopAC
is able to quickly learn an effective strategy in less than
25 episodes in each of the control environments. On the
contrary, SAC often struggles to improve performance sig-
nificantly beyond random sampling within the limited time
frame. Even when SAC is able to achieve a strategy compa-
rable to CopAC, it typically requires double the number of
interactions to do so. We find that MBPO outperforms SAC
in terms of evaluation reward. In environments in which the
model is simpler to learn such as MyoSim Reach and Pendu-

lum, MBPO performs on par with CopAC. However, when
dealing with more complex environments such as MyoSim
Pose in which each finger must be precisely manipulated,
MBPO learns much slower than our approach.

We next investigate the importance of the various compo-
nents of CopAC via an ablation study. We compare the
evaluation rewards of CopAC with two modified versions:
CopAC (-Q Update) and CopAC (-Q Update, -Q Max). Co-
pAC (-Q Update) does not update the world-action value
model during online learning. We anticipate that not includ-
ing this update will only impact performance when not all
world actions are realizable due to brain lesioning. We see
the most prominent benefit of updating the world-action
model in the Swimmer domain. We also see an improve-
ment in Reacher and a small improvement towards the end
of the 25 episodes in several other domains.

We next investigate the benefit of our sampling strategy
which selects the stimulation that maximizes Qψ, given
our current knowledge of F̂ ϕ

brain. To do so, we compare
CopAC to a random sampling strategy without updating
the world action-value model, i.e., CopAC (-Q update, -Q
max). Because we are not focusing sampling on high-value
regions of the world actions space, we expect CopAC (-Q
update, -Q max) to learn more slowly compared to CopAC.
We find that a random sampling strategy under-performs in
the MyoSim Pose domain compared to CopAC’s strategic
sampling strategy and also produces lower evaluation reward
in the Swimmer, Reacher, Pendulum, and Inverted Double
Pendulum domains.
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Figure 5. Training results for CopAC compared to SAC, MBPO, and ablated CopAC. The dashed line represents the reward obtained by
the healthy brain.

5.3. Training Reward

Ideally, a coprocessor should simultaneously provide stim-
ulation that maximally assists the stroke patient given its
current model of the patient while continuously refining
and updating its policy. In the previous section, we estab-
lished that our approach learns a superior policy with fewer
samples than the baseline methods. Here we investigate
if, during policy learning, we are able to achieve a higher
training reward compared to baselines. Training reward is
an important metric in our brain stimulation domain because
it indicates how well an approach is able to aid a patient in
completing the desired task during policy learning. Figure 5
shows the training reward summed over each episode of
online interaction. Due to our sampling strategy which se-
lects stimulations that produce high-value world actions, our
approach is able to achieve high task reward during learning.
This means that CopAC can successfully assist the patient
in accomplishing a given task during the learning phase. In
contrast, MBPO and SAC achieve a significantly lower train-
ing reward. CopAC (-Q update, -Q max) performs poorly
in all environments due to the random sampling policy.

6. Discussion
Our findings demonstrate the advantage of MBRL over
MFRL in the domain of adaptive brain stimulation.
Leveraging a model of the patient’s biomechanics enables
CopAC to reduce the number of interactions and achieve
more than a 10x benefit in sample efficiency in many

environments. This improved sample efficiency means that
patients will be able to quickly benefit from a high-quality
stimulation policy. We find that the benefit of our approach
is particularly apparent in domains that require complex
motor movements with large action spaces (e.g., MyoSim
Hand Pose) whereas domains that require more coarse
movements with lower dimensional action spaces (e.g.,
MyoSim Arm Reach) do not produce as large of a benefit
compared to baselines. This insight is important because
stroke patients often struggle with complex tasks requiring
fine motor skills. We show that our approach is the most
effective at learning stimulation policies for these complex
tasks whereas an approach like MBPO may suffice for
simpler tasks that require only gross motor control.

In the adaptive brain stimulation domain, high training re-
ward is important for improving patient experience. A sam-
pling strategy that produces off-task behavior will likely
be disruptive and frustrating to a patient and could even
pose a risk to the patient’s safety. In our ablation study, we
show that by leveraging the action-value model to sample
in an on-policy manner, CopAC produces higher training
reward compared to random sampling. CopAC’s training
reward contrasts with both SAC and MBRL which utilize
an off-policy strategy to sample stimulations, resulting in
lower reward. Notably, CopAC’s strategy exhibits a signifi-
cant advantage in the MyoSim Hand Pose environment. We
hypothesize that this result is due to the fact that this envi-
ronment has a much larger action space (39-dimensional)
compared to the other environments. This result under-
scores the importance of a strategic sampling approach to
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efficiently learn a high-quality policy in environments with
a substantial action space.

We find that updating the world action-value model is an im-
portant component in some domains. However, if all world
actions are realizable by the injured brain or if the unrealiz-
able actions are unimportant to task success, then updating
the world action-value model may be inconsequential.

Our results show strengths of CopAC in areas particularly
crucial for adaptive brain stimulation. The learned world
action-value model enables good performance throughout
training, which is important for patient comfort and safety.
Our approach additionally excels over baselines in complex
tasks requiring fine-grained control, providing benefits in
both sample efficiency and performance.

7. Conclusion
Summary: We have introduced CopAC, an MBRL ap-
proach for learning a coprocessor policy for stroke patients.
Our key insight is that the optimal stimulation policy is a
combination of modeling optimal world actions and deter-
mining how to produce world actions via brain stimulation.
Our approach leverages a simulation-derived Q-function to
model the quality of world actions for a given task. We then
employ this world action-value model to intelligently and
efficiently learn the mapping from coprocessor stimulations
to world actions. To avoid an overly-optimistic Q-function,
we iteratively update the action-value model based upon our
current model of the brain. We demonstrate our approach
in both a novel, physiologically-motivated environment and
standard control tasks. Our approach excels in terms of
sample efficiency and overall task reward, surpassing both
MBRL and MFRL methods across all domains. By improv-
ing sample efficiency 10-fold, we take a step towards an
RL approach that can be deployed in vivo. Our hope is to
pave the way for future advancements in applying RL to
closed-loop brain stimulation in real-world settings.

Limitations: One limitation of our work is that we only
evaluate CopAC in silico due to the difficulty of in vivo
evaluations. The invasive nature of brain stimulation and
potential negative side effects of unsafe stimulation motivate
us to first validate the efficacy of our approach in simulation
before deploying in the real world. We are also limited by
our reliance on a realistic biomechanical simulator to enable
sample efficiency. Since we test in simulation, we have ac-
cess to the same environment to learn an action-value model
in the first step of CopAC. Our experiments therefore do not
perfectly reflect real-world challenges posed by the gap in
realism between simulators and human patients. Another
challenge of real-world applications is the technology re-
quired (e.g., electromyography and vicon) for estimating
world states and actions. Finally, although our approach

minimizes patient interaction, it still requires online learn-
ing for which we have not theoretically guaranteed safety.
Such safety guarantees would be crucial for any in vivo
applications.

Future Work: Future work will focus on addressing these
limitations. We will test how the action-value model trained
in biomechanical simulation transfers to human patients in
in vivo evaluations. Additionally, we will explore offline RL
for learning the action-value model in circumstances where
a biomechanical simulator is not available. To improve
safety and mitigate patient risk during online learning, in
future work we aim to draw upon existing approaches in
safe RL and we will work closely with clinical collaborators
to ensure that we are safely and appropriately constraining
the stimulation space during in vivo experiments (García &
Fernández, 2015).

Impact Statement
A major ethical concern of automated coprocessor policy
learning is that adaptive brain stimulation can pose a safety
risk to patients if stimulations outside of a safe region are
applied to the brain. To mitigate these risks, in future work,
when deploying CopAC on real patients, we aim to work
closely with clinical collaborators to ensure patient safety
and appropriately constrain the action space during online
learning.

Another ethical consideration involves the possibility of
RL coprocessor approaches being exploited for malicious
control over end-users. Unauthorized manipulation of RL
policies, such as through adversarial attacks, could lead
to unethical interventions and compromise the well-being
of individuals with brain implants. To reduce this risk, in
future work, we will draw on prior work in guarding against
adversarial attacks to mitigate potential exploitation (Chen
et al., 2019).
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Appendix

A. Learning Qψ with offline RL
Our method hinges on learning Qψ without requiring online patient interactions. While we demonstrate that we can leverage
a biomechanical simulator to learn Qψ , in some instances we may not have access to a high-fidelity simulator. In these cases,
we consider the use of an existing dataset to train Qψ through offline RL. This approach assumes that we have access to a
historical coprocessor dataset from stimulation policies previously deployed on the patient. We use Conservative Soft Actor
Critic to learn Qψ from this dataset. Once Qψ is learned from the offline data, we follow the same procedure for learning
F̂ ϕ

brain as discussed in Section 4.2.

Figure 6 shows the training reward for our approach when Qψ is learned via offline RL compared to baselines. We show
that CopAC (offline) performs better than the baselines in most environments but performs slightly worse than CopAC when
Qψ is learned via simulation. This outcome supports the viability of offline RL as an alternative approach. However, it
suggests that using a biomechanical simulator, when available, is likely a better option for learning Qψ . In future work we
aim to investigate how the amount of data and the suboptimality of the policy used to collect the data affects performance.
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Figure 6. Training reward for CopAC compared to SAC, MBPO, and ablated CopAC. The dashed line represents the reward obtained by
the healthy brain.

B. F̂ ϕ
brain training details

We train F̂ ϕ
brain for 75 epochs with a learning rate of 5 · 10−3. The architecture consists of three hidden layers with ReLU

activations consisting of 64, 32, and 8 neurons.

C. Robustness to initialization of F̂ ϕ
brain

To validate that CopAC is robust to the initialization of F̂ ϕ
brain, we additionally run CopAC and ablations across 5 random

seeds. Results are displayed in Figures 7 and 8. Here, we only use a single brain for each environment rather than taking the
average across multiple brains as in our other experiments.
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Figure 7. Training reward for CopAC and ablations. Results from a single seed are displayed alongside results averaged across random
seeds.
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Figure 8. Evaluation reward for CopAC and ablations. Results from a single seed are displayed alongside results averaged across random
seeds.

D. Comparison with inverse brain model coprocessor
We additionally compare CopAC to a baseline approach using an inverse brain model to select stimulations. We learn the
inverse brain model F̂ ϕ

inverse : S ×A → Ā that maps world actions to the stimulations that would have induced them. The
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inverse brain model coprocessor policy selects stimulations with F̂ ϕ
inverse to induce world actions returned by the optimal

world policy π, as defined in Equation (7).

π̄inverse(s) ≜ F̂ ϕ
inverse(s, π(s)) (7)

Algorithm 2 Inverse Brain Model Coprocessor

Require: world MDP M = (S,A, P,R), s0 ∼ p0
Require: stimulation space Ā, injured brain Fbrain

1: initialize F̂ ϕ
inverse

2: while access to simulator do
3: rollout π in M with experiences (s, a, r, s′)
4: fit Qψ(s, a) with Equation (4)
5: end while
6: while access to injured brain do
7: rollout π̄inverse in M with experiences (s, ā, r, s′)
8: a← Fbrain(s, ā)

9: fit F̂ ϕ
inverse(s, a) to ā

10: end while
11: return π̄inverse

The inverse brain model approach is presented in Algorithm 2. We evaluate it against CopAC and show a comparison of
their performance during training and evaluation in Figures 9 and 10. We find that CopAC is able to achieve a higher reward
and better sample efficiency compared to the inverse brain model.
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Figure 9. Training results for inverse brain model coprocessor compared to CopAC, ablated CopAC, and baselines.
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Figure 10. Evaluation results for inverse brain model coprocessor compared to CopAC, ablated CopAC, and baselines.

E. Robustness to sim to real gap
We perform experiments shown in Figure 11 to simulate the sim-to-real gap by systematically altering the dynamics of the
environment during online training and testing while learning F̂ ϕ

brain. We demonstrate that our method is robust to these
effects up to a point and that the online training aspect of our approach can help to account for a mismatch between simulated
and real biomechanics. Specifically, we show that we can alter gravity by up to 40% during online interaction in Pendulum
and maintain performance. We show that our approach is robust to nearly 30% change in gravity in LunarLander. In our
Myosim environments, we systematically alter the observations during online training and testing and show that the Arm
Reach task maintains performance for 10% shift in observations and Hand Pose can handle nearly a 40% change.

Figure 11. Evaluation reward when altering the environment during online training. We show that our approach is robust to a mismatch
between simulation and reality.
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