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Chapter 1

Introduction: Building Generalist Algorithms

We live in interesting times! During the process of writing this introduction, I read throughmy old qualifying

examination document and was surprised by how much the ML world has changed during this relatively

short time. That old quals document outlined desiderata like sample efficiency, disentanglement, etc. Of

course, these things still matter, but with the advent of truly scalable foundation models, the opportunity to

build generalist agents has taken priority. My excitement is of course, tempered when I think of what Tom

Cargill from Bell Labs said:

The first 90 percent of the code accounts for the first 90 percent of the development time. The

remaining 10 percent of the code accounts for the other 90 percent of the development time.

When I began the PhD, modern Reinforcement Learning (RL) systems [163, 83, 106, 99] had shown

impressive results on a host of benchmarks from Atari Games [107], Locomotion [99] to even autonomous

control of Stratospheric Balloons [9]. They were still, however, notoriously sample inefficient [131, 110],

often requiring millions of interactions with their environments. They also were known to require carefully

constructed reward functions and were prone to failure in sparse reward settings [173, 135] (this is still the

case). Finally, they were specialists — they generally solved one task at a time. I call this the pre-foundation

model era.
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In contrast of course, humans learn from relatively few demonstrations, requiring no external re-

ward functions and do so without millions of steps of exploration [61, 25]. I began the PhD, with this

anthropomorphization as an inspiration.

In the first part of this dissertation, during this pre-foundation model era I worked on how knowledge

can be collected by RL systems during autonomous exploration. To this end, I invented a new form of

intrinsic curiosity, dubbed Causal Curiosity, published as a spotlight paper at ICML 2021 [158], which

encourages agents to be curious about the differences in the properties (unknown to the agent) of a set of

environments. This form of curiosity allows the agent to learn behaviors akin to experimental behaviors

performed by human scientists. For example, given environments with different values of masses of objects,

our agents learned to grasp and lift each object up to discover how much they weigh. Designing reward

functions for grasping is a challenging problem [82] and it was very interesting to see these emergent

behaviors using Causal Curiosity.

I also used Causal Curiosity to detect out-of-distribution (OOD) environments. RL agents are known to

be brittle to distribution shifts [165] a fact which I verified in our follow-up work, GalilAI, published at

AISTATS 2022 [157]. Thus, detecting environments that are out-of-distribution is a step in the direction of

deploying existing RL algorithms in-the-wild safely. GalilAI uses Causal Curiosity to perform experiments

to determine whether a new environment is within distribution or not. Perhaps one of the most interesting

emergent behaviors we obtained was when we set up an experiment where the agent interacted with a

set of environments with varying masses and at test time was provided an environment with a different

gravitational acceleration as an OOD environment. Using GalilAI, our agents learn to discern between high

and low gravitational environments - while being invariant to their mass - through a free-falling behavior.

These behaviors mimic Galileo’s experiments (dropping objects of different masses from the top of the

Tower of Pisa to discover that they fall at the same speed) that ultimately led to the experimental discovery

of the Equivalence Principle!
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The second half of this thesis, in the post-foundation model era, explored how to use large pretrained

models to improve sequential decision-making. This portion of the dissertation asks: instead of having

agents explore and generate knowledge, can we inject agents with human knowledge so that they learn

faster or achieve higher asymptotic performance or generalize to hundreds of tasks? My first work in

this direction, SHERLock, published at ICPR 2022 [137] explored how to learn unstructured event

representations from real-world demonstration videos. I followed it up with Video2Skill [159], where I

adapted SHERLock’s representations into a robotic embodiment. I found that our agent was able to perform

complex skills like stirring and pouring motions simply by watching cooking video demonstrations.

During this phase of my Ph.D., I was also fortunate to contribute to some seminal work in building new

foundation models for robot learning: RT-1 [20] and Q-Transformer [29], works that won a best demo

paper at RSS 2023. This direction also yielded my NeurIPS 2023 paper, RoboCLIP, One Demonstration

is Enough to Learn Robot Policies. This work provided a solution to a multitude of open problems in robot

learning — (1) learning from very few demonstrations, (2) learning from human demonstrations and (3) task

specification using language.

The remainder of this dissertation details these learnings one chapter at a time. In the final chapter, I

enlist my thoughts for the final project I hope to conduct in this PhD, and pose possibly the most challenging

question I have asked thus far — how do we build autonomous physical agents that have a common sense

understanding of the world?

I hope you enjoy reading this thesis as much as I have enjoyed working on it.
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Chapter 2

RoboCLIP: One Demonstration is Enough to Learn Robot Policies

2.1 Introduction

Sequential decision-making problems typically require significant human supervision and data. In the

context of online reinforcement learning [163], this manifests in the design of good reward functions that

map transitions to scalar rewards [4, 66]. Extant approaches to manual reward function definition are not

very principled and defining rewards for complex long-horizon problems is often an art requiring significant

human expertise. Additionally, evaluating reward functions often requires knowledge of the true state of

the environment. For example, imagine a simple scenario where the agent must learn to lift an object off

the ground. Here, a reward useful for task success would be proportional to the height of the object from

the ground — a quantity non-trivial to obtain without full state information. Thus, significant effort has

been expounded in developing methods that can learn reward functions either explicitly or implicitly from

demonstrations, i.e., imitation learning [130, 114, 1, 189]. With these methods, agent policies can either be

directly extracted from the demonstrations or trained to optimize rewards functions learned from them.

Imitation learning (IL), however, only somewhat alleviates the need for expert human intervention.

First, instead of designing complex reward functions, expert supervision is needed to collect massive

datasets such as RT-1 [20], Bridge Dataset [47], D4RL [55], or Robonet [41]. The performance of imitation

learning algorithms and their ability to generalize hinges on the coverage and size of data [90, 91], making
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Figure 2.1: RoboCLIP Overview. A Pretrained Video-and-Language Model is used to generate rewards via the

similarity score between the encoding of an episode of interaction of an agent in its environment, zv with the encoding
of a task specifier zd such as a textual description of the task or a video demonstrating a successful trajectory. The

similarity score between the latent vectors is provided as reward to the agent.

the collection of large datasets imperative. Second and most importantly, the interface for collecting

demonstrations for IL is tedious, requiring expert robot operators to collect thousands of demonstrations.

On the contrary, a more intuitive way to define rewards would be in the form of a textual description (e.g.,

“robot grasping object”), or in the form of a naturalistic video demonstration of the task performed by a

human actor in an environment separate from the robotic environment. For example, demonstrating to a

robot how to open a cabinet door in one’s own kitchen is more naturalistic than collecting many thousands

of trajectories via teleoperation in the target robotic environment.

Thus, there exists an unmet need for IL algorithms that 1) require very few demonstrations and 2) allow

for a natural interface for providing these demonstrations. For instance, algorithms that can effectively

learn from language instructions or human demonstrations without the need for full environment state

information. Our key insight is that by leveraging Video-and-Language Models (VLMs)—which are already

pretrained on large amount of video demonstration and language pairs—we do not need to rely on large-

scale and in-domain datasets. Instead, by harnessing the power of VLM embeddings, we treat the mismatch

between a single instruction’s embedding (provided as a language command or a video demonstration)

and the embedding of the video of the current policy’s rollout as a proxy reward that will guide the policy

towards the desired instruction.
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To this end, we present RoboCLIP, an imitation learning algorithm that learns and optimizes a reward

function based on a single language or video demonstration. The backbone model used in RoboCLIP is

S3D [177] trained on the Howto100M dataset [105], which consists of short clips of humans performing

activities with textual descriptions of the activities. These videos typically consist of a variety of camera

angles, actors, lighting conditions, and backgrounds. We hypothesize that VLMs trained on such diverse

videos are invariant to these extraneous factors and generate an actor-agnostic semantically-meaningful

representation for a video, allowing them to generalize to unseen robotic environments.

We present an overview of RoboCLIP in Figure 2.1. RoboCLIP computes a similarity score between

videos of online agent experience with a task descriptor, i.e., a text description of the task or a single

human demonstration video, to generate trajectory-level rewards to train the agent. We evaluate RoboCLIP

on the Metaworld Environment suite [181] and on the Franka Kitchen Environment [64], and find that

policies obtained by pretraining on the RoboCLIP reward result in 2− 3× higher zero-shot task success in

comparison to state-of-the-art imitation learning baselines. Additionally, these rewards require no experts

for specification and can be generated using naturalistic definitions like natural language task descriptions

and human demonstrations.

2.2 Related Work

Learning from Human Feedback. Learning from demonstrations is a long-studied problem that

attempts to learn a policy from a dataset of expert demonstrations. Imitation learning (IL) methods, such as

those based on behavioral cloning [130], formulate the problem as a supervised learning over state-action

pairs and typically rely on large datasets of expert-collected trajectories directly demonstrating how to

perform the target task [20, 102]. However, these large demonstration datasets are often expensive to collect.

Another IL strategy is inverse RL, i.e., directly learning a reward function from the demonstrations [114,
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1, 189, 53]. Inverse RL algorithms are typically difficult to apply when state and action spaces are high-

dimensional. Methods such as GAIL [74], AIRL [56], or VICE [57] partially address these issues by assigning

rewards which are proportional to the probability of a given state being from the demonstration set or a

valid goal state as estimated by a learned discriminator network. However these discriminator networks

still require many demonstrations or goal states to train to effectively distinguish between states from agent-

collected experience and demonstration or goal states. On the other hand, RoboCLIP’s use of pretrained

video-and-language models allows us to train agents that learn to perform target tasks with just one

demonstration in the form of a video or a language description. Other works instead use human feedback

in the form of pairwise comparisons or rankings to learn preference reward functions [34, 140, 14, 109,

15, 22, 13, 95, 69]. These preferences may require less human effort to obtain than reward functions, e.g.,

through querying humans to simply rank recent trajectories. Yet individual trajectory preferences convey

little information on their own (less than dense reward functions) and therefore humans need to respond to

many preference queries for the agent to learn useful reward functions. In contrast, RoboCLIP is able to

extract useful rewards from a single demonstration or single language instruction.

Large Vision and Language Models as Reward Functions. [92] and [76] propose using large language

models (LLMs) for designing and regularizing reward functions that capture human preferences. These

works study the reward design problem in text-based games such as negotiations or card games, and thus

are not grounded in the physical world. RoboCLIP instead leverages video-and-language models to assess

if video demonstrations of robot policies align with an expert demonstration. Prior work has demonstrated

that video models can be used as reward functions. For example, [30] learn a visual reward function using

human data and then utilize this reward function for visual model-based control of a robot. However, they

require training the reward model on paired human and robot data from the deployment environment. We

demonstrate that this paired data assumption can be relaxed by utilizing large-scale vision-language models

pretrained on large corpora of human-generated data. The most well-known of these is CLIP [132], which
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is trained on pairs of images and language descriptions scraped from the internet. While CLIP is trained

only on images, video-language-models (VLMs) trained on videos of humans performing daily tasks such

as S3D [177] or XCLIP [116] are also widely available. These models utilize language descriptions while

training to supervise their visual understanding so that semantically similar vision inputs are embedded

close together in a shared vector space. A series of recent works demonstrate that these VLMs can produce

useful rewards for agent learning. [51] finetune CLIP on YouTube videos of people playing Minecraft and

demonstrate that the finetuned CLIP model can be used as a language-conditioned reward function to

train an agent. DECKARD [119] then uses the fine-tuned reward function of [51] to reward an agent for

completing tasks proposed by a large-language model and abstract world model. PAFF [58] uses a fine-tuned

CLIP model to align videos of policy rollouts with a fixed set of language skills and relabel experience with

the best-aligned language label. We demonstrate that videos and multi-modal task specifications can be

utilized to learn reward functions allowing for training agents. Additionally, we present a method to test

the alignment of pretrained VLMs with deployment environments.

2.3 Method

Overview. RoboCLIP utilizes pretrained video-and-language models to generate rewards for online

RL agents. This is done by providing a sparse reward to the agent at the end of the trajectory which

describes the similarity of the agent’s behavior to that of the demonstration. We utilize video-and-language

models as they provide the flexibility of defining the task in terms of natural language descriptions or video

demonstrations sourced either from the target robotic domain or other more naturalistic domains like

human actors demonstrating the target task in their own environment. Thus, a demonstration (textual or

video) and the video of an episode of robotic interaction are embedded into the semantically meaningful

latent space of S3D [177], a video-and-language model pretrained on diverse videos of human actors

performing everyday tasks taken from the HowTo100M dataset [105]. The two vectors are subsequently
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multiplied using a scalar product generating a similarity score between the 2 vectors. This similarity score

(without scaling) is returned to the agent as a reward for the episode.

Notation. We formulate the problem in the manner of a POMDP (Partially Observable Markov Decision

Process) with (O, S , A, ϕ, θ, r, T , γ) representing an observation space O, state space S , action space

A, transition function ϕ, emission function θ, reward function r, time horizon T , and discount factor γ.

An agent in state st takes an action at and consequently causes a transition in the environment through

ϕ(st+1 | st,at). The agent receives the next state st+1 and reward rt = r(ot,at) calculated using the

observation ot. The goal of the agent is to learn a policy π which maximizes the expected discounted sum

of rewards, i.e.,

∑T
t=0 γ

trt. Note that all of our baselines utilize the true state for reward generation and for

policy learning. To examine the effect of using a video-based reward, we also operate our policy on the

state space while using the pixel observations for reward generation. Thus, rt uses ot while π uses st for

RoboCLIP while for all other baselines, both rt and π utilize st. This of course is unfair to our method, but

we find that in spite of the advantage provided to the baselines, RoboCLIP rewards still generate higher

zero-shot success.

Reward Generation. During the pretraining phase, we supply the RoboCLIP reward to the agent in a

sparse manner at the end of each episode. This is done by storing the video of an episode of the interaction

of the agent with the environment into a buffer as seen in Figure 2.1. A sequence of observations of length

128 are saved in a buffer corresponding to the length of the episode. S3D is trained on videos length 32

frames and therefore the episode video is subsequently downsampled to result in a video of length T = 32.

The video is subsequently center-cropped to result in frames of size (250, 250). This is done to ensure that

the episode video is preprocessed to match the specifications of the HowTo100M preprocessing used to
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train the S3D model. Thus the tensor of a sequence of T observations o0:T is encoded as the latent video

vector zv using

zv = S3Dvideo-encoder(o0:T ) (2.1)

The task specification is also encoded into the same space. If it is defined using natural language, the

language encoder in S3D encodes a sequence ofK textual tokens d0:K into the latent space using:

zd = S3Dtext-encoder(d0:K) (2.2)

If the task description is in the form of a video of lengthK , then we preprocess and encode it using the

video-encoder in S3D just as in Equation (2.1). For intermediate timesteps, i.e., timesteps other than the

final one in an episode, the reward supplied to the agent is zero. Subsequently, at the end of the episode,

the similarity score between the encoded task descriptor zd and the encoded video of the episode zv is used

as reward rRoboCLIP(T ). Thus the reward is:

rRoboCLIP(t) =


0, t ̸= T

zd · zv t = T

where zd · zv corresponds to the scalar product between vectors zd and zv .

Agent Training. Using rRoboCLIP defined above, we then train an agent online in the deployment en-

vironment with any standard reinforcement learning (RL) algorithm by labeling each agent experience

trajectory with rRoboCLIP after the agent collects it. In our paper, we train with PPO [151], an on-policy RL

algorithm, however, RoboCLIP can also be applied to off-policy algorithms. After training with this reward,

the agent can be zero-shot evaluated or fine-tuned on true environment reward on the target task in the

deployment environment.
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2.4 Experiments

We test out each of the hypotheses defined in Section 2.1 on simulated robotic environments. Specifically,

we ask the following questions:

1. Do existing pretrained VLMs semantically align with robotic manipulation environments?

2. Can we utilize natural language to generate reward functions?

3. Can we use videos of expert demonstrations to generate reward functions?

4. Can we use out-of-domain videos to generate reward functions?

5. Can we generate rewards using a combination of demonstration and natural language?

6. What aspects of our method are crucial for success?

We arrange this section to answer each of these questions. Both RoboCLIP and baselines utilize PPO [151]

for policy learning.

Baselines. We use 2 state-of-the-art methods in inverse reinforcement learning: GAIL, or Generative

Adversarial Imitation Learning [74] and AIRL or Adversarial Inverse Reinforcement Learning [56]. Both of

these methods attempt to learn reward functions from demonstrations provided to the agent. Subsequently,

they train an agent using this learned reward function to imitate the expert behavior. Both methods receive

a single demonstration, consistent with our approach of using a single video imitation. However, since they

both operate on the ground-truth environment state, we provide them with a trajectory of states, instead

of images, thereby providing them privileged state information that our method does not receive.

2.4.1 Domain Alignment

Pretrained vision models are often trained on a variety of human-centric activity data, such as Ego4D [62].

Since we are interested in solving robotic tasks with view from third person perspectives, we utilize the
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Figure 2.2: Domain Alignment Confusion Matrix. We perform a confusion matrix analysis on a subset of

the data on collected on Metaworld [181] environments by comparing the pair-wise similarities between the latent

vectors of the strings describing the videos and those of the videos. We find that Metaworld is well-aligned with

higher scores along the diagonal than along the off-diagonal elements.

S3D [177] VLM pretrained on HowTo100M [105], a dataset of short third-person clips of humans performing

everyday activities. This dataset, however, contains no robotic manipulation data.

To analyze the alignment of the VLM to different domains, we perform a confusion matrix analysis

using videos from Metaworld [181]. We collect 10 videos per task with varying values of true reward. For

each video, we also collect the true reward. We then compute the RoboCLIP reward for each video using

VLM alignment between the textual description of the task and the video. We visualize the correlations

between the RoboCLIP and true rewards in the form of an n× n matrix where entry (i, j) corresponds to

the correlation between the true reward and the RoboCLIP reward generated for the ith task using the jth

text description. As one can see, for a given task, the highest correlation in the matrix is for the correct

textual description. We visualize one such similarity matrix in Figure 2.2 for Metaworld. We find that

Metaworld seems to align well in the latent space of the model with a more diagonal-heavy confusion

matrix. The objects are all correctly identified.
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Figure 2.3: Language-Conditioned Reward Generation. The pretrained VLM is used to generate rewards via the

similarity score of the encoding of an episode of interaction of an agent in its environment, zv with the encoding of

a task specifier zd specified in natural language. We use the strings, “robot closing black box”, “robot closing green
drawer” and “robot pushing red button” for conditioning for the 3 environments respectively. We find that agents

pretrained on these language-conditioned rewards outperform imitation learning baselines like GAIL [74] and AIRL

[56].

2.4.2 Language for Reward Generation

The most naturalistic way to define a task is through natural language. We do this by generating a sparse

reward signal for the agent as described in Section 2.3: the reward for an episode is the similarity score

between its encoded video and the encoded textual description of the expected behavior in the VLM’s latent

space. The reward is provided to the agent at the end of the episode. For RoboCLIP, GAIL, and AIRL, we

first pretrain the agents online with their respective reward functions and then perform finetuning with

the true task reward in the deployment environment.

We perform this analysis on 3Metaworld Environments: Drawer-Close, Door-Close and Button-Press.

We use the textual descriptions, “robot closing green drawer”, “robot closing black box”, and “robot pushing

red button” for each environment, respectively. Figure 2.3 plots returns on the target tasks while finetuning

on the depoloyment environment after pretraining (with the exception of the Dense Task Reward baseline).

Our method outperforms the imitation learning baselines with online exploration in terms of true task

rewards in all environments. Additionally our baselines utilize the full state information in the environment

for reward generation where RoboCLIP uses only the pixels to infer state. RoboCLIP also achieves more

than double zero-shot rewards in all environments — importantly, the RoboCLIP-trained agent is able to

complete the tasks even before finetuning on true task rewards.
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Figure 2.4: Using In-Domain Videos for Reward Generation. The pretrained VLM is used to generate rewards

via the similarity score of the encoding of an episode of interaction of an agent in its environment, zv with the

encoding of a video demonstration of expert behavior in the same environment. The similarity score between the

latent vectors is provided as reward to the agent and is used to train online RL methods. We study this setup in

the Kettle, Hinge and Slide Tasks in the Franka Kitchen Environment [64]. We find that policies trained on the

RoboCLIP reward are able to learn to complete the task in all three setups without any need for external rewards

using just a single in-domain demonstration.

2.4.3 In-Domain Videos for Reward Generation

Being able to use textual task descriptors for reward generation can only work in environments where

there is domain alignment between the pretrained model and the visual appearance of the environment.

Additionally, VLMs are large models often with billions of parameters making it computationally expensive

to fine tune for domain alignment. The most naturalistic way to define a task in such a setting is in the form

a single demonstration in the robotic environment which can be collected using teleoperation. We study

how well this works in the Franka Kitchen [64] environment. We consider access to a single demonstration

per task whose video is used to generate rewards for online RL.

Quantitative Results. We measure the zero-shot task reward, which increases as the task object (i.e.,

Kettle, Slide and Hinge Cabinets) gets closer to its goal position. This reward does not depend on the

position of the end-effector, making the tasks difficult. Figure 2.4 shows the baselines perform poorly as

they generally do not interact with the target objects, while RoboCLIP is able to solve the task using the

reward generated using the video of a single demonstration.

Qualitative Results. We find that RoboCLIP allows for mimicking the “style” of the source demonstration,

with idiosyncrasies of motion from the source demonstration generally transferring to the policy generated.
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Figure 2.5: Qualitative Inspection of Imitation. The first row in each subfigure shows the visualizations of

the demonstration video used for reward generation via the VLM. The second rows are videos taken from policy

recovered from training on the RoboCLIP reward generated using the videos in the first rows. The quick swiping

motion demonstrated in the Slide demonstration is mimicked well in the resultant policy while the wrist-rotational

“trick-shot” behavior in the demonstration for Hinge appears in the resultant learned policy.

We find this to occur in the kitchen environment’s Slide and Hinge task as seen in Figure 2.5. The first

row of the subfigures in Figure 2.5 are visualizations of the demonstration video used to condition the VLM

for reward generation. The bottom rows correspond to the policies that are trained with the generated

rewards of RoboCLIP. As can be seen, the Slide demonstration consists of a wide circular arc of motion.

This is mimicked in the learned policy, although the agent misses the cabinet in the first swipe and readjusts

to make contact with the handle.

This effect is even more pronounced in the Hinge example where the source demonstration consists of

twirling wrist-rotational behavior, which is subsequently imitated by the learned policy. The downstream

policy misses the point of contact with the handle but instead uses the twirling motion to open the hinged

cabinet in an unorthodox manner by pushing near the hinge. We posit that the VLMs used in RoboCLIP
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Figure 2.6: Finetuning for Harder Environments: In harder environments, like Coffee-Push and Faucet-Open,
we find that RoboCLIP rewards do not solve the task completely. We test whether providing a single demonstration

in the environment (using states and actions) is enough to finetune this pretrained policy, a setup identical to our

baselines. Thus, we pre-train on the RoboCLIP reward from language and then finetune using a single robotic

demonstration. This improves performance by ∼ 200%. See videos on our website.
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Figure 2.7: Using Out-of-Domain Videos for Reward Generation. A Pretrained Video-and-Language Model

is used to generate rewards via the similarity score of the encoding of an episode of interaction of an agent in its

environment, zv with the encoding of a task specifier zd in the form of a video of a human or an animated character

demonstrating a task in their own environment. The similarity score between the latent vectors is provided as reward

to the agent and is used to train online RL methods. The frames below the graphs illustrate the video used for reward

generation.

contain a rich latent space encoding these various motions, and so even if they cannot contain semantically

meaningful latent vectors in the Franka Kitchen environments due to domain mismatch, they are still able

to encode motion information allowing them to be used for RoboCLIP with a single demonstration video.

2.4.4 Out-of-Domain Videos for Reward Generation

Another natural way to define a task is to demonstrate it yourself. To this end, we try to use demonstrations

of humans or animated characters acting in separate environments as task specification.
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Figure 2.8: Multimodal Task Specification. We study whether video demonstrations of expert demonstrations

can be used to define tasks. We use the latent embedding of a video demonstration of a robot pushing a button and

subtract from it the embedding of the text “red button” and add to it the embedding of the text “green drawer”. This
modified latent is used to generate rewards in the Drawer-Close environment. We find that the policy trained using

this modified vector outperforms string-only manipulation in the zero-shot setting.

For this, we utilize animated videos of a hand pushing a red button and opening a green drawer and a

real human video of opening a fridge door (see Figure 2.7). The animated videos are collected from stock

image repositories and the human video is collected using a phone camera in our lab kitchen. Using the

encodings of these video, we test out RoboCLIP in the 3 corresponding Metaworld tasks - Button-Press,

Drawer-Open and Door-Open. We follow the same setup as in Section 2.4.2 by first pretraining methods

with their respective reward functions and then finetuning in the deployment environment with target task

reward.

We compare the performance of the policy trained with these rewards to GAIL [74] and AIRL [56]

trained using the same single expert demonstration as RoboCLIP on these rewards with state information.

These methods are known to be data-hungry, requiring multiple demonstrations to train their reward

functions. Consequently, they perform much worse than RoboCLIP, even with 2-3x worse zero-shot task

performance, as can be seen from Figure 2.7.
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2.4.5 Multimodal Task Specification

Using videos to specify a task description is possible when either there is access to a robot for teleoperation

as in Section 2.4.3 or a human can demonstrate a behavior in their own environment as in Section 2.4.4.

When these are not the case, a viable alternative is to utilize multimodal demonstrations. For example,

consider a scenario where the required task is to push a drawer to close it, but only a demonstration for

pushing a button is available. In this situation, being able to edit the video of the off-task demonstration

is useful. This way, one can direct the agent to move its end-effectors to push the drawer instead of the

button.

We do this by algebraically modifying the encoding of the video demonstration:

zedited(push drawer) = zvideo(push button)− ztext(button) + ztext(drawer) (2.3)

where zedited(push drawer) is the vector used to generate rewards in the Drawer-Close environment,

zvideo(push button) is the vector of the encoding of the video of the robot pushing a button, ztext(button)

is the encoding of the string button and ztext(drawer) is the encoding of the string drawer. As can be seen

in Figure 2.8, defining rewards in such a multimodal manner results in a higher zero-shot score than the

dense task reward and also pretraining on the string-only task reward.

2.4.6 Finetuning

In harder environments, and with rewards from OOD videos and language, the robot policy sometimes

approaches the target object, but fails to complete the task. Thus, we tested whether providing a single

demonstration (using states and actions) was enough to finetune this pretrained policy.

Thus, for this experiment we first (1) pretrain on the RoboCLIP reward from human videos or language

descriptions and then (2) finetune using a single demonstration. As seen in Figure 2.6, we find that this
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converts each of the partially successful policies into complete success and improves the rewards attained

by the policies by 200%. This fine-tuning setup is especially useful in harder tasks like like Coffee-Push

and Faucet-Open and is competitive with state-of-the-art approaches like FISH [67].

2.4.7 Ablations

Finally, we investigate the effects of various design decisions in RoboCLIP. First, we study the effect of

additional video demonstrations on agent performance. We also examine the necessity of using a pre-trained

VLM. Recent works like RE3 [152, 170] have shown that randomly initialized networks often contain useful

image priors and can be used to supply rewards to agents to encourage exploration. Therefore, we test

whether a randomly initialized S3D VLM can supply useful pretraining rewards in the in-domain video

demonstration setup as in Section 2.4.3. Finally, we study our choice of pre-trained VLM. We examine

whether a pretrained CLIP [132], which encodes single images instead of videos and was trained on a

different dataset from S3D, can be used to generate rewards for task completion. In this setup, we record

the last image in an episode of interaction of the agent in its environment and feed it to CLIP trained on

ImageNet [138] (i.e., not trained on videos). We then specify the task in natural language and use the

similarity between the embeddings of the textual description of the task and the final image in the episode

to generate a reward that is fed to the agent for online RL.

As seen in Figure 2.9, using a single video demonstration provides the best signal for pretraining. We

posit that our method performs worse when conditioned on multiple demonstrations as the linear blending

of multiple video embeddings, which is used due to the scalar product, does not necessarily correspond to

the embedding of a successful trajectory.

Crucially, we also find that using the static image version of CLIP does not provide any useful signal for

pretraining. The zero-shot performance is very poor, which we posit is because it does not contain any

information about the dynamics of motion and task completion although it contains semantic meaning
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Figure 2.9: Ablations. We study the effects of varying the number of demonstrations provided to the agent can have

on downstream rewards. We also study the effects of the training provided to the VLM on the downstream rewards.

Finally, we study whether using CLIP trained on static images provides good rewards for pretraining.

about objects in the frame. On the other hand, video contrastive learning approaches do contain this

information. This is further evidenced by the fact that inspite of poor domain alignment between Franka

Kitchen and the VLM, we find that encodings of in-domain video demonstrations are still good for providing

a pretraining reward signal to the agent.

2.5 Conclusion

Summary. We studied how to distill knowledge contained in large pretrained Video-and-Language-Models

into online RL agents by using them to generate rewards. We showed that our method, RoboCLIP, can

train robot policies using a single video demonstration or textual description of the task, depending on how

well the domain aligns with the VLM. We further investigated alternative ways to use RoboCLIP, such as

using out-of-domain videos or multimodal demonstrations. Our results showed RoboCLIP outperforms the

baselines in various robotic environments.
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Limitations and Broader Impact. Since we are using VLMs, the implicit biases within these large models

could percolate into RL agents. Addressing such challenges is necessary, especially since it is unclear what

the form of biases in RL agents might look like. Currently, our method also faces the challenge of stable

finetuning. We find that in some situations, finetuning on downstream task reward results in instabilities as

seen in the language conditioned reward curve in Figure 2.8. This instability is potentially due to the scale of

rewards provided to the agent. Rewards from the VLM are fairly low in absolute value and subsequently, the

normalized Q-values in PPO policies are out-of-shape when finetuned on task rewards. In our experiments,

this is not a big problem since the RoboCLIP reward is already sufficient to produce policies that complete

tasks without any deployment environment finetuning, but this will be essential to solve when deploying

this for longer horizon tasks.

Another limitation of our work is that there is no fixed length of pretraining. Our current method

involves pretraining for a fixed number of steps and then picking the best model according to the true task

reward. This is of course difficult when deploying RoboCLIP in a real-world setup as a true reward function

is unavailable and a human must monitor the progress of the agent. We leave this for future work.

In this work, we saw how to reward RL agents using the commonsense available within VLMs. But can

robots have their own intrinsic motivation to explore their world? Causal curiosity (the upcoming chapter)

studies this.
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Chapter 3

Causal Curiosity: RL Agents Discovering Self-supervised Experiments for

Causal Representation Learning

3.1 Introduction

Discovering causation in environments an agent might encounter remains an open and challenging problem

for reinforcement learning [11, 149]. In physical systems, causal factors such as gravity or friction affect

the outcome of behaviors an agent might perform. Thus, there has been recent interest in attempting

to train agents to be robust or invariant against varying values of such causal factors, allowing them

to learn modular behaviors that are useful across tasks. Most model-based approaches take the form of

Bayes Adaptive Markov Decision Processes (BAMDPs) [190] or Hidden Parameter MDPs (Hi-Param MDPs)

[46, 179, 87, 127] which condition the transition and/or reward function of each environment on hidden

parameters.

Formally, let s ∈ S , a ∈ A, r ∈ R, h ∈ H where S , A, R, and H are the set of states, actions, rewards

and admissible causal factors, respectively. In the physical world, examples of the parameter hj ∈ H

might include gravity, coefficients of friction, masses and sizes of objects. Hi-Param MDP or BAMDP

approaches treat each hj ∈ H as a latent variable for which an embedding is learnt during training (often

using variational methods [89, 79]). Let a0:T be a sequence of actions taken by an agent to maximize an
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external reward resulting in a state trajectory s0:T . The above approaches define a probability distribution

over the entire observable sequence (i.e., rewards, states, actions) as p(r0:T , s0:T ,a0:T−1) which factorizes

as

T−1∏
t=1

p(rt+1|st,at, st+1, z)p(st+1|st,at, z)p(at|st, z)

conditioned on the latent variable z, a representation for the unobserved causal factors. At test time, in a

new environment, the agent infers z by observing the trajectories produced by its initial actions issued by

the latent conditioned policy obtained during training.

In practice, discovering causal factors in a physical environment is prone to various challenges that are

due to the disjointed nature of the influence of these factors on the produced trajectories. More specifically,

at each time step, the transition function is affected by a subset of global causal factors. This subset is

implicitly defined on the basis of the current state and the action taken. For example, if a body in an

environment loses contact with the ground, the coefficient of friction between the body and the ground no

longer affects the outcome of any action that is taken. Likewise, the outcome of an upward force applied by

the agent to a body on the ground is unaffected by the friction coefficient.

Without knowledge of how independent causal mechanisms affect the outcome of a particular action in

a given state in an environment, it becomes impossible for the agent to conclude where an encountered

variation came from. Unsurprisingly, Hi-Param and BAMDP approaches fail to learn a disentangled

embedding of the causal factors, making their behaviors uninterpretable. For example, if, in an environment,

a body remains stationary under a particular force, the Hi-Param or BAMDP agent may apply a higher force

to achieve its goal of perhaps moving the body, but will be unable to conclude whether the "un-movability"

was caused by a high friction coefficient, or high mass. Additionally, these approaches require substantial

reward engineering, making it difficult to apply them outside the simulated environments they are tested

in.
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Our goal is, instead of focusing on maximizing reward for a particular task, to allow agents to discover

causal processes through exploratory interaction. During training, our agents discover self-supervised

experimental behaviors which they apply to a set of training environments. These behaviors allow them

to learn about the various causal mechanisms that govern the transitions in each environment. During

inference in a novel environment, they perform these discovered behaviors sequentially and use the outcome

of each behavior to infer the embedding for a single causal factor (Figure 3.1), allowing us to recover a

disentangled embedding describing the causal factors of an environment.

The main challenge while learning a disentangled representation for the causal factors of the world is

that several causal factors may affect the outcome of behaviors in each environment. For example, when

pushing a body on the ground, the outcome, i.e., whether the body moves, or how far the body is pushed,

depends on several factors, e.g., mass, shape and size, frictional coefficients, etc. However, if, instead of

pushing on the ground, the agent executes a perfect grasp-and-lift behavior, only mass will affect whether

the body is lifted off the ground or not.

Thus, it is clear that not all experimental behaviors are created equal and that the outcomes of some

behaviors are caused by fewer causal factors than others. Our agents learn these behaviors without

supervision using causal curiosity, an intrinsic reward. The outcome of a single such experimental behavior

is then used to infer a binary quantized embedding describing the single isolated causal factor. While causal

factors of variation in a physical world are easily identifiable to humans, a concrete definition is required to

formalize our proposed method.

Definition 1 (Causal factors). Consider the POMDP (O, S , A, ϕ, θ, r) with observation space O, state space

S , action space A, the transition function ϕ, emission function θ, and the reward function r. Let o0:T ∈ OT

denote a trajectory of observations of length T . Let d(·, ·) : OT ×OT → R+ be a distance function defined on

the space of trajectories of length T . The set H = {h0,h1, . . . ,hK−1} is called a set of ϵ−causal factors if for
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every hj ∈ H , there exists a unique sequence of actions a0:T that clusters the observation trajectories into m

disjoint sets C1:m such that ∀Ca, Cb, a minimum separation distance of ϵ is ensured:

min{d(o0:T ,o′0:T ) : o0:T ∈ Ca,o
′
0:T ∈ Cb} > ϵ (3.1)

and that hj is the cause of the obtained trajectory of states i.e. ∀v ̸= v′,

p(o0:T |do(hj = v),a0:T ) ̸= p(o0:T |do(hj = v′),a0:T ) (3.2)

where do(hj) corresponds to an intervention on the value of the causal factor hj .

According to Def. 2, a causal factor hj is a variable in the environment the value of which, when

intervened on (i.e., varied) using do(hj) over a set of values, results in trajectories of observations that are

divisible into disjoint clusters C1:m under a particular sequence of actions a0:T . These clusters represent

the quantized values of the causal factor. For example, mass, which is a causal factor of a body, under an

action sequence of a grasping and lifting motion, may result in 2 clusters, liftable (low mass) and not-liftable

(high mass).

However, such an action sequence is not known in advance. Therefore, discovering a causal factor in

the environment boils down to finding a sequence of actions that makes the effect of that factor prominent

by producing clustered trajectories for different values of that environmental factor. For simplicity, here we

assume binary clusters. For an introduction to causality and do(·) notation, see [126, 161, 150, 48].

Our contributions of our work are as follows:

• Causal POMDPs: We extend Partially ObservableMarkov Decision Processes (POMDPs) by explicitly

modelling the effect of causal factors on observations.
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Figure 3.1: Overview of Inference. The exploration loop produces a series ofK experiments allowing the agent

to infer the representations for K causal factors. After exploration, the agent utilizes the acquired knowledge for

downstream tasks.

• Unsupervised Behavior: We equip agents with the ability to perform experiments and behave

in a semantically meaningful manner in a set of environments in an unsupervised manner. These

behaviors can expose or obfuscate specific independent causal mechanisms that occur in the world

surrounding the agent, allowing the agent to "experiment" and learn.

• Disentangled Representation Learning: We introduce an minimalistic intrinsic reward, causal

curiosity, which allows our agents to discover these behaviors without human-engineered complex

rewards. The outcomes of the experiments are used to learn a disentangled quantized binary rep-

resentation for the causal factors of the environment, analogous to the human ability to conclude

whether objects are light/heavy, big/small etc.

• Sample Efficiency: Through extensive experiments, we conclude that knowledge of the causal

factors aids sample efficiency in two ways - first, that the knowledge of the causal factors aids

transfer learning across multiple environments; second, the learned experimental behaviors can be

re-purposed for downstream tasks.
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3.2 Method

Consider a set of N environments E with ei ∈ E where ei denotes the ith environment. Each causal

factor hj ∈ H is itself a random variable which assumes a particular value for every instantiation of an

environment. Thus, every environment ei is represented with the values assumed by its causal factors

{hi
j , j = 0, 1, . . . ,K−1}. For each environment ei, (zi0, z

i
1...z

i
K−1) represents the disentangled embedding

vector corresponding to the physical causal factors where zij encodes h
i
j .

3.2.1 POMDP Setup

3.2.1.1 Classical POMDPs

Classical POMDPs (O, S , A, ϕ, θ, r) consist of an observation space O, state space S , action space A, the

transition function ϕ, emission function θ, and the reward function r. An agent in an unobserved state st

takes an action at and consequently causes a transition in the environment through ϕ(st+1|st,at). The

agent receives an observation ot+1 = θ(st+1) and a reward rt+1 = r(st,at).

3.2.1.2 Causal POMDPs

Our work divides the unobserved state s ∈ S at each timestep into two portions - the controllable state sc

and the uncontrollable state su. The uncontrollable portion of the state su consists of the causal factors of

the environment. We assume that these remain constant during the interaction of the agent with a single

instance of the environment. For example, the value of the gravitational acceleration does not change for a

single environment. For the following discussion, we refer to the uncontrollable state as causal factors as in

Def 2 i.e., su = H.

The controllable state sc consists of state variables such as positions and orientations of objects, location

of end-effectors of the agent etc. Thus, by executing particular action sequences the agent can manipulate

this portion of the state, which is hence controllable by the agent.
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3.2.1.3 Transition Probability

A trajectory of the controllable state is dependent on both the action sequence that the agent executes and

a subset of the causal factors. At each time step, only a subset of the causal factors of an environment affect

the transition in the environment. This subset is implicitly selected by the employed policy for every state

of the trajectory (depicted as a Gated Causal Graph (Figure 3.2)). For example, the outcome of an upward

force applied by the agent to a body on the ground is unaffected by the friction coefficient between the

body and the ground.

Thus the transition function of the controllable state is:

ϕ(sct+1|sct , fsel(H, sct ,at),at) (3.3)

where fsel is the implicit Causal Selector Function which selects the subset of causal factors affecting the

transition defined as:

fsel : H× S ×A → ℘(H) (3.4)

where
℘(H) is power-set ofH and fsel(H, sct ,at) ⊂ H is the set of effective causal factors for the transition

st → st+1 i.e., ∀v ̸= v′ and ∀hj ∈ fsel(H, sct ,at):

ϕ(sct+1|do(hj = v), sct ,at) ̸= ϕ(sct+1|do(hj = v′), sct ,at) (3.5)

where do(hj) corresponds to an external intervention on the factor hj in an environment.

Intuitively, this means that if an agent takes an action at in the controllable state sct , the transition

to sct+1 is caused by a subset of the causal factors fsel(H, sct ,at). For example, if a body on the ground

(i.e., state sct ) is thrown upwards (i.e., action at), the outcome st+1 is caused by the causal factor gravity

(i.e., fsel(H, sct ,at) = {gravity}), a singleton subset of the global set of causal factors. The do() notation
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expresses this causation. If an external intervention on a causal factor is performed, e.g., if somehow the

value of gravity was changed from v to v′, the outcome of throwing the body up from the ground, st+1,

would be different.

3.2.1.4 Emission Probability

The agent neither has access to the controllable state, nor to the causal factors of each environment. It

receives an observation described by the function:

ot+1 = θ(sct , fsel(H, sct ,at),at) (3.6)

where fsel is the implicit Causal Selector Function.

3.2.2 Training the Experiment Planner

The agent has access to a set of training environments with multiple causal factors varying simultaneously.

Our goal is to allow the agent to discover action sequences a0:T such that the resultant observation trajectory

oi0:T is caused by a single causal factor i.e., ∀t < T, fsel(H, sct ,at) = constant and |fsel(H, sct ,at)| = 1.

Consequently, oi0:T can be used to learn a representation zij for the causal factor fsel(H, sct ,at) for each

environment ei.

We motivate this from the perspective of algorithmic information theory [80]. Consider the Gated

Directed Acyclic Graph of the observed variableO and its causal parents (Figure 3.2). Each causal factor has

its own causal mechanism, jointly bringing aboutO. A central assumption of our approach is that causal

factors are independent, i.e., the Independent Mechanisms Assumption [6, 122, 150]. The information in

O is then the sum of information “injected” into it from the multiple causes, since, loosely speaking, for

information to cancel, the mechanisms would need to be algorithmically dependent [80]. Intuitively, the

information content inO will be greater for a larger number of causal parents in the graph. Interestingly, a
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Figure 3.2: Gated Causal Graph. A subset of the unobserved parent causal variables influence the observed variable

O. The action sequence a0:T serves a gating mechanism, allowing or blocking particular edges of the causal graph

using the implicit Causal Selector Function (Equation 4.4).

similar argument has been made to justify the thermodynamic arrow of time [28, 81]: while a microscopic

time evolution is invertible, the assumption of algorithmic independence for initial conditions and forward

mechanisms generates an asymmetry. To invert time, the backward mechanism would need to depend on

the initial state.

Thus we attempt to find an action sequence a0:T for which the number of causal parents of the resultant

observation O is low, i.e., the complexity of O is low. One could conceive of this by assuming that the

generative model for O, M has low Kolmogorov Complexity. Here, a low capacity bi-modal model is

assumed. We utilize Minimum Description Length L(·) (MDL) as a tractable substitute of the Kolmogorov

Complexity [136, 63]).

Causal curiosity solves the following optimization problem.

a∗0:T = argmin
a0:T

(L(M) + L(O|M)) (3.7)

where each observed trajectoryO = O(a0:T ) is a function of the action sequence. As mentioned earlier,

the model is fixed in this formulation; hence, the first term L(M) is constant and not a function of the
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Algorithm 1 Recursive Training Scheme

Initialize j = 0
Initialize training environment set Envs Train(j, zi0:j , Envs)
if j == K then
Return

end if
for iteration m to M do

Sample experimental behavior a0:T ∼ CEM(·|zi0:j)
for ith env in Envs do

Apply a0:T to env

Collect Oi = oi0:T
Reset env

end for
Calculate −L(O|M) given thatM is bimodal clustering model

Update CEM(·) distribution with highest reward trajectories

end for
Use learnt qM (zij |O, zi0:j) for cluster assignment of each env in Envs i.e. zij = qM (z|Oi, zi0:j)
Update j = j + 1
Train(j, zi0:j , Envs = {ei : zij−1 = 0})
Train(j, zi0:j , Envs = {ei : zij−1 = 1})

actions. The MDL of the trajectories given binary categorization model, −L(O|M), is the inherent reward

function that is fed back to the RL agent. We regard this reward function as causal curiosity.

3.2.3 Causal Inference Module

By maximizing the causal curiosity reward it is possible to achieve behaviors which result in trajectories of

states only caused by a single hidden parameter. Subsequently, we utilize the outcome of performing these

experimental behaviors in each environment to infer a representation for the causal factor isolated by the

experiment in question.

We achieve this through clustering. An action sequence a0:T ∼ CEM(·|zi0:j−1) is sampled from the

Model Predictive Control Planner [26] and applied to each of the training environments. The learnt
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clustering modelM is then used to infer a representation for each environment using the collected outcome

Oi
obtained by applying a0:T to each environment.

zij = qM (z|Oi, zi0:j−1) (3.8)

The learnt representation z is the cluster membership obtained from the learnt clustering model M. It

is binary in nature. This corresponds to the quantization of the continuous spectrum of values a causal

factor takes in the training set into high and low values.

3.2.4 Interventions on beliefs

Having learnt about the effects of a single causal factor of the environment we wish to learn such experi-

mental behaviors for each of the remaining hidden parameters that may vary in the training environments.

To achieve this, in an ideal setting, the agent would require access to the generative mechanism of the

environments it encounters. Ideally, it would hold the values of the causal factor already learnt about a

constant i.e. do(hj = constant), and intervene over (vary the value of) another causal factor over a set

of values V i.e. do(hj′ = v) such that v ∈ V . For example, if a human scientist were to study the effects

of a causal factor, say mass of a body, they would hold the values of all other causal factors constant (e.g.,

interact with cubes of the same size and external texture), and vary only mass to see how it affects the

outcome of specific behaviors they apply to each body.

However, in the real world the agent does not have access to the generative mechanism of the environ-

ments it encounters, but merely has the ability to act in them. Thus, it can intervene on the representations

of a causal factor of the environment i.e. do(zi = constant). For, example having learnt about gravity, the

agent picks all environments it believes have the same gravity, and uses them to learn about a separate

causal factor say, friction.
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Thus, to learn about the jth causal factor, the agent proceeds in a tree-like manner, dividing each of the

2j−1
clusters of training environments into two sub-clusters corresponding to the binary quantized values

of the jth causal factor. Each level of this tree corresponds to a single causal factor.

Envs = {ei : zij−1 = k}, k ∈ {0, 1} (3.9)

This process continues iteratively (Algorithm 1 and Figure 3.3), where for each cluster of environments,

a new experiment learns to split the cluster into 2 sub-clusters depending on the value of a hidden

parameter. At level n, the agent produces 2n experiments, having already intervened on the binary

quantized representations of n causal factors.

3.3 Related Work

Curiosity for robotics is not a new area of research. Pioneered by Schmidhuber in the 1990s, [144, 145,

146, 147], [115], [125] curiosity is described as the motivation behind the behavior of an agent in an

environment for which the outcome is unpredictable, i.e., an intrinsic reward that motivates the agent to

explore the unseen portions of the state space (and subsequent transitions). [46] define a class Markov

Decision Processes where transition probabilities p(st+1|st, at; θ) depend on a hidden parameter θ, whose

value is not observed, but its effects are felt. [87] and [179] utilize these Hidden Parameter MDPs (Markov

Decision Processes) to enable efficient policy transfer, assuming that transition probabilities across states

are a function of hidden parameters. [127] relax this assumption, allowing both transition probabilities and

reward functions to be functions of hidden parameters. [190] approach the problem from a Bayes-optimal

policy standpoint, defining transition probabilities and reward functions to be dependent on a hidden

parameter characteristic of the MDP in consideration. We utilize this setup to define causal factors.

Substantial attempts have been made at unsupervised disentanglement, most notably, the β-VAE [72] [24],
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where a combination of factored priors and the information bottleneck force disentangled representations.

[88] enforce explicit factorization of the prior without compromising on the mutual information between

the data and latent variables, a shortcoming of the β-VAE. [31] factor the KL divergence into a more explicit

form, highlighting an improved objective function and a classifier-agnostic disentanglement metric. [100]

show theoretically that unsupervised disentanglement (in the absence of inductive biases) is impossible

and highly unstable, susceptible to random seed values. They follow this up with [101] where they show,

both theoretically and experimentally, that pair-wise images provide sufficient inductive bias to disentangle

causal factors of variation. However, these works have been applied to supervised learning problems

whereas we attempt to disentangle the effects of hidden variables in dynamical environments, a relatively

untouched question.

3.4 Experiments

Figure 3.3: Discovered hierarchical latent space. The agent learns experiments that differentiate the full set

of blocks in ShapeSizeMass into hierarchical binary clusters. At each level, the environments are divided into 2

clusters on the basis of the value of a single causal factor. We also show the principal components of the trajectories

in the top left. For brevity, the full of extent of the tree is not depicted here. For each level of hierarchy k, there are 2k

number of clusters.

34



Our work has 2 main thrusts - the discovered experimental behaviors and the representations obtained

from the outcome of the behaviors in environments. We visualize these learnt behaviors and verify that

they are indeed semantically meaningful and interpretable. We quantify the utility of the learned behaviors

by using the behaviors as pre-training for a downstream task. In our experimental setup, we verify that

these behaviors are indeed invariant to all other causal factors except one.

We visualize the representations obtained using these behaviors and verify that they are indeed the binary

quantized representations for each of the ground truth causal factors that wemanipulated in our experiments.

Finally, we verify that the knowledge of the representation does indeed aid transfer learning and zero-shot

generalizability in downstream tasks.

Causal World. We use the Causal World Simulation [3] based on the Pybullet Physics engine to test

our approach. The simulator consists of a 3-fingered robot, with 3 joints on each finger. We constrain

each environment to consist of a single object that the agent can interact with. The causal factors that

we manipulate for each of the objects are size, shape and mass of the blocks. The simulator allows us to

capture and track the positions and velocities of each of the movable objects in an environment.

Mujoco Control Suite. We optimize causal curiosity on 4 articulated agents that try to learn locomotion

- Ant, Half-Cheetah, Hopper, and Walker. For each agent type, we train with agent body masses from 0.5×

to 1.5× the default.

3.4.1 Visualizing Discovered Behaviors

We would like to analyze whether the discovered experimental behaviors are human interpretable, i.e., are

the experimental behaviors discovered in each of the setups semantically meaningful? We find that our agents

learn to perform several useful behaviors without any supervision. For instance, to differentiate between

objects with varying mass, we find that they acquire a perfect grasp-and-lift behavior with an upward force.

In other random seed experiments, the agents learn to lift the blocks by using the wall of the environment
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for support. To differentiate between cubes and spheres, the agent discovers a pushing behavior which

gently rolls the spheres along a horizontal direction. Qualitatively, we find that these behaviors are stable

and predictable. See videos of discovered behaviors here (website under construction).

Concurrent with the objective they are trained on, we find that the acquired behaviors impose structure

on the outcome when applied to each of the training environments. The outcome of each experimental

behavior on the set of training environments results in dividing it into 2 subsets corresponding to the binary

quantized values of a single factor, e.g., large or small, while being invariant to the values of other causal

factors of the environments. We also perform ablation studies where instead of providing the full state

vector, we provide only one coordinate (e.g., only x, y or z coordinate of the block). We find that causal

curiosity results in behaviors that differentiate the environments based on outcomes along the direction

provided. For example, when only the x coordinate was provided, the agent learned to evaluate mass by

applying a pushing behavior along the x direction. Similarly, a lifting behavior was obtained when only the

z coordinate was supplied to the curiosity module (Figure 3.4).

Causal curiosity also yields semantically meaningful behaviors that test out agent mass in Mujoco: the

Half-Cheetah learns a front-flip, the Hopper learns to hop to gauge its own mass, in the absence of external

rewards (Fig 3.7).

3.4.2 Utility of learned behaviors for downstream tasks

While the behaviors acquired are semantically meaningful, we would like to quantify their utility as pre-

training for downstream tasks. We analyze the performance on Lifting where the agent must grasp and

lift a block to a predetermined height and Travel, where the agent must impart a velocity to the block

along a predetermined direction. We re-train the learnt planner using an external reward for these tasks

(Curious). We implement a baseline vanilla Cross Entropy Method optimized Model Predictive Control

Planner [42] (Vanilla CEM) trained using the identical reward function and compare the rewards per
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Figure 3.4: Examples of discovered behaviors. The agent discovers experimental behaviors that allow it to

characterize each environmental object in a binary manner, e.g., heavy/light, big small, rollable/not rollable, etc.

These behaviors are acquired without any external supervision by maximizing the causal curiosity reward. A, B, C
correspond to self-discovered toss, lift-and-spin and roll behaviors respectively. D shows an ablation study, where the

agent is only provided the z coordinate of the block in every environment. Each line corresponds to one environment

and the z coordinate of the block is plotted with time when the discovered behavior is applied. It learns a lifting

behavior, where cluster 1 represents the heavy blocks (z coordinate does not change much) and cluster 2 represents

the light blocks (z increases as block is lifted and then falls when dropped and subsequently increases again when it

bounces).

trajectory during training. We also run a baseline (Additive reward) which explores whether the agent

recieves both the causal curiosity reward and the external reward. We find high zero-shot generalizability

and quicker convergence as compared to the vanilla CEM (Figure 3.5). We also find that additive rewards,

achieves suboptimal performance due to competing objectives.

Figure 3.5: Utility of discovered behaviors. We find that the behaviors discovered by the agents while optimizing

causal curiosity show high zero-shot generalizability and converge to the same performance as conventional planners

for downstream tasks. We also analyze the worst case performance and find that the pre-training ensures better

performance than random initialization. The table compares the time-steps of training required on an average to

acquire a skill with the time steps required to learn a similar behavior using external reward. We find that the

unsupervised experimental behaviors are approximately 2.5 times more sample efficient. We also find that maxizing

both curiosity and external reward in our experimental setups results in sub-optimal results.
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Figure 3.6: Knowledge of causal factors aids transfer. We find that knowledge of the causal representation

allows agents to generalize to unseen environments with high zero-shot performance. We find that as the number

of varying causal factors increase, the difference in zero-shot performance of the Causally-curious agent and the

Generalist increases, showing that the CC agents are indeed robust to multiple varying causal factors. Panes A and B
are represent reward curves for TransferMass and TransferSizeMass. Pane C shows the training rewards curve

for the new StackingTower experiment and Pane D shows the reward curves during adaptation to an unseen value

of causal factors.

Figure 3.7: Mujoco Experiments. Pane A shows discovered experimental behaviors on Half-Cheetah and Hopper,

while Pane B shows discovered experimental behaviors on Ant and Walker. The Half-Cheetah learns to front-flip, the

Hopper learns to hop, and the Ant learns to rear up on its hind legs to gauge its mass.

3.4.3 Visualization of hierarchical binary latent space

Our agents discover a disentangled latent space such that they are able to isolate the sources of causation

of the variability they encounters in their environments. For every environment, they learn a disentangled

embedding vector which describes each of the causal factors.

To show this, we use 3 separate experimental setups - Mass, SizeMass and ShapeSizeMass where

each of the causal factors are allowed to vary over a range of discrete values.

During training, the agent discovers a hierarchical binary latent space (Figure 3.3), where each level of

hierarchy corresponds to a single causal factor. The binary values at each level of hierarchy correspond to

the high/low values of the causal factor in question. To our knowledge, we obtain the first interpretable
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latent space describing the various causal processes in the environment of an agent. This implies that it

learns to quantify each physical attribute of the blocks it encounters in a completely unsupervised manner.

3.4.4 Knowledge of causal factors aids transfer

Next, we test whether knowledge of the causal factors does indeed aid transfer and zero-shot generalizability.

To this end, we supply the representations obtained by the agent during the experimental behavior phase

as input to a policy network in addition to the state of the simulator, and train it for a place-and-orient

downstream task (Figure 3.1). We define 2 experimental setups - TransferMass and TransferSizeMass

where mass and size of the object in each environment is varied. We also test our agent in a separate

task, StackingTower, where the agent is provided 2 blocks which it must use to build a stable tower

configuration. These blocks vary in mass and the agent must use causal representations to learn to build

towers with a heavy base for stability. In each of the setups, the agent learns about the varying causal

mechanisms by optimizing causal curiosity. Subsequently, using the causal representation along with the

state for each environment, it is trained to maximize external reward.

After training, the agents are exposed to a set of unseen test environments, where we analyze their

zero-shot generalizability. These test environments consist of unseen masses and sizes and their unseen

combinations. This corresponds to "Strong Generalization" as defined by [127]. We report results averaged

over 10 random seeds.

For each setup, we train a PPO-optimized Actor-Critic Policy (referred to as Causally-curious agent)

with access to the causal representations and an observation vector from the environment i.e., at ∼

π(·|ot, z0:K). Similar to [127], we implement 2 baselines - theGeneralist and the Specialist. The Specialist

consists of an agent with identical architecture as Causally-curious agent, but without access to causal

representations. It is initialized randomly and is trained only on the test environments, serving as a

benchmark for complexity of the test tasks. It performs poorly, indicating that the test tasks are complex.
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The architecture of the Generalist is identical to the Specialist. Like the Specialist, the Generalist also

does not have access to the causal representations, but is trained on the same set of training environments

that the Causally-curious agent is trained on. The poor performance of the generalist indicates that the

tasks distribution of training and test tasks differs significantly and that memorization of behaviors does

not yield good transfer. We find that causally-curious agents significantly outperform the both baselines

indicating that indeed, knowledge of the causal representation does aid zero-shot generalizability.

3.5 Conclusion

Our work introduces a causal viewpoint of POMDPs, where unobserved static state variables (i.e., causal

factors) affect the transition of dynamic state variables. Causal curiosity rewards experimental behaviors

an agent can conduct in an environment that underscore the effects of a subset of such global causal factors

while obfuscating the effects of others. Motivated by the popular One-Factor-at-a-Time (OFAT) [54, 71,

40], our agents study the effects causal factors have on the dynamics of an environment through active

experimentation and subsequently obtain a disentangled causal representation for causal factors of the

environment. Finally, we show that knowledge of causal representations does indeed improve sample

efficiency in transfer learning.

Causal curiosity can help RL agents adapt to new values of seen causal factor variations. But what if a

new causal factor is varied at inference? How can RL agents adapt? The next chapter GalilAI studies such

settings.
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Chapter 4

GalilAI: Out-of-Task Distribution Detection using Causal Active

Experimentation for Safe Transfer RL

4.1 Introduction and Related Work

Generalization to near-distribution shifts caused by natural perturbations and Detection of out-of-

distribution shifts caused by artificial perturbations (adversarial attacks) are central desiderata of modern

decision-making systems. Significant advances have been made in supervised learning systems on both

fronts - with work in transfer/meta-learning aiding the ability of ML systems to generalize across shifts

in input distributions [148, 141, 52]. Such methods learn internal representations which are invariant to

perturbations occurring in data [10]. These invariant representations are subsequently used for domain

adaptation [184, 108], with applications in music [16] and speech [153]. Out-of-distribution Detection for

the supervised learning domain has also made significant advances [70, 45, 98, 59], with the development

of both training-time methods [176] (alterations to typical supervised training to make models robust to

OOD inputs) and inference-time methods (utilizing the features of a fully trained model to detect OOD

samples)[75].
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While attempts have been made in generalization in the space of sequential long-horizon RL and

decision-making [52, 111, 65, 123, 133, 190], Out-of-Distribution Detection is fairly unexplored. To our

knowledge, our work is the first that offers a concrete causal framework for OOD Detection.

We motivate the need for OOD Detection in RL with an example. Consider an agent that has learnt to

land an aircraft for various values of directions and velocity of crosswinds. Now consider the situation

when one of the airplane’s engines fails when the agent is deployed. Current RL systems would assume

that the observations they receive from this test environment were caused by perhaps high crosswinds and

would subsequently increase fuel flow to the engines - a potentially disastrous strategy. On the contrary, a

seasoned pilot might perform an experiment - perhaps yawing the aircraft from side-to-side, concluding that

due to the low controllability of the aircraft, the engine was somehow compromised. Our work extends that

of Sontakke et al. by utilizing advances in algorithmic information theory and curiosity-based reinforcement

learning to “encourage" the RL agent to perform such experimental behaviors and conclude whether a

test-time environment is out-of-training-distribution or not.

During our experiments, we find that our agent discovers the Galilean Equivalence Principle,

managing to successfully decouple the effect of mass and gravitational acceleration. For this reason, we

refer to the agent as GalilAI (pronounced Galilei). The contributions of our work are as follows:

• Causal transfer: We offer a causal perspective on transfer learning in RL and provide a theoretical

framework for defining various classes of transfer RL problems.

• Causal active experimentation (GalilAI) for safe transfer RL: We extend the work of Sontakke

et al. to provide an algorithm aimed at improving the safety of transfer reinforcement learning by

detecting whether a given test environment is out-of-distribution or not. If an environment is detected

as OOD, the agent could relinquish control of a system to a human operator [4].
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• Probabilistic baseline: Due to a lack of prior work in the field, we propose a simple probabilistic

neural network baseline for OOD Detection of environments in RL. We compare GalilAI and the

PNN in complex robotic domains such as the Causal World [3] and Mujoco [166].

4.2 Preliminaries

Definition 2 (Causal factors). Consider the POMDP (O, S , A, ϕ, θ, r) with observation space O, state space

S , action space A, the transition function ϕ, emission function θ, and the reward function r. Let o0:T ∈ OT

denote a trajectory of observations of length T . Let d(·, ·) : OT ×OT → R+ be a distance function defined on

the space of trajectories of length T . The set H = {h0,h1, . . . ,hK−1} is called a set of ϵ−causal factors if for

every hj ∈ H , there exists a unique sequence of actions a0:T that clusters the observation trajectories into m

disjoint sets C1:m such that ∀Ca, Cb, a minimum separation distance of ϵ is ensured:

min{d(o0:T ,o′0:T ) : o0:T ∈ Ca,o
′
0:T ∈ Cb} > ϵ (4.1)

and that hj is the cause of the obtained trajectory of states i.e. ∀v ̸= v′,

p(o0:T |do(hj = v),a0:T ) ̸= p(o0:T |do(hj = v′),a0:T ) (4.2)

where do(hj) corresponds to an intervention on the value of the causal factor hj .

According to Definition 2, a causal factor hj is a variable in the environment the value of which, when

intervened on (i.e., varied) using do(hj) over a set of values, results in trajectories of observations that are

divisible into disjoint clusters C1:m under a particular sequence of actions a0:T . These clusters represent

the quantized values of the causal factor. For example, mass, which is a causal factor of a body, under an
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action sequence of a grasping and lifting motion with fixed force, may result in 2 clusters, liftable (low

mass) and not-liftable (high mass).

4.2.1 POMDPs and Causal POMDPs

Classical POMDPs (O, S , A, ϕ, θ, r) consist of an observation space O, state space S , action space A, the

transition function ϕ, emission function θ, and the reward function r. An agent in an unobserved state st

takes an action at and consequently causes a transition in the environment through ϕ(st+1|st,at). The

agent receives an observation ot+1 = θ(st+1) and a reward rt+1 = r(st,at). Causal POMDPs explicitly

model the effects of causal factors on the transition and emission functions by dividing the state into the

controllable state sct and the causal factor, H. The causal factors of an environment cannot be manipulated

by the agent, but their values affect the outcome of an action taken by the agent. Thus the transition

function of the controllable state is:

ϕ(sct+1|sct , fsel(H, sct ,at),at) (4.3)

where fsel is the implicit Causal Selector Function which selects the subset of causal factors affecting the

transition defined as:

fsel : H× S ×A → ℘(H) (4.4)

where
℘(H) is power-set ofH and fsel(H, sct ,at) ⊂ H is the set of effective causal factors for the transition

st → st+1 i.e., ∀v ̸= v′ and ∀hj ∈ fsel(H, sct ,at):

ϕ(sct+1|do(hj = v), sct ,at) ̸= ϕ(sct+1|do(hj = v′), sct ,at) (4.5)

where do(hj) corresponds to an external intervention on the factor hj in an environment.
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Intuitively, this means that if an agent takes an action at in the controllable state sct , the transition

to sct+1 is caused by a subset of the causal factors fsel(H, sct ,at). For example, if a body on the ground

(i.e., state sct ) is thrown upwards (i.e., action at), the outcome st+1 is caused by the causal factor gravity

(i.e., fsel(H, sct ,at) = {gravity}), a singleton subset of the global set of causal factors. The do() notation

expresses this causation. If an external intervention on a causal factor is performed, e.g., if somehow the

value of gravity was changed from v to v′, the outcome of throwing the body up from the ground, st+1,

would be different.

4.2.2 Algorithmic Information Theoretic View on Causality

Causality can be motivated from the perspective of algorithmic information theory [80]. Consider the

Gated Directed Acyclic Graph of the observed variableO and its causal parents (Figure 4.1). Each causal

factor has its own causal mechanism, jointly bringing aboutO. The action sequence a0:T serves a gating

mechanism, allowing or blocking particular edges of the causal graph using the implicit Causal Selector

Function (Equation (4.4)). A central assumption of our approach is that causal factors are independent,

i.e., the Independent Mechanisms Assumption [6, 122, 150]. The information in O is then the sum of

information “injected” into it from the multiple causes, since, loosely speaking, for information to cancel,

the mechanisms would need to be algorithmically dependent [80]. Thus, the information content in O will

be greater for a larger number of independent causal parents in the graph.

L(O) ∝ |PA(O))| (4.6)

where L(·) is the Minimum Description Length (MDL), a tractable substitute of the Kolmogorov Complexity

[136, 63]).
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4.2.3 Causal Curiosity

Causal curiosity [158] allows an RL agent to discover sequences of actions that bring out the effect of a

single causal factor while ignoring the effects of all other. This is similar to how a human scientist studying

multiple mechanisms in their environment would behave whilst following the One-Factor-at-a-Time (OFAT)

paradigm of experiment design [54]. For e.g., when interacting with objects of varying mass and shape, a

human scientist will learn a perfect lifting sequence that grasps all shapes and then use it to test out the

mass of each object.

Thus, Causal Curiosity selects one among multiple competing causal mechanisms and generates a sequence

of actions that bring out the effect of the selected mechanism. This is done by attempting to learn a simple

model of the environment with capacity low enough to learn about only a single causal mechanism at a

time. One could conceive of this by assuming that the generative model for O, M has low Kolmogorov

Complexity. A low capacity bi-modal model is assumed. The Minimum Description Length (MDL), L(·)

is utilized as a tractable substitute of the Kolmogorov Complexity [136, 63]). Subsequently, the following

optimization problem is solved.

a∗0:T = argmin
a0:T

(L(M) + L(O|M)) (4.7)

where each observed trajectory O = O(a0:T ) is a function of the action sequence. Thus the resulting

action sequence from the optimization in Equation (4.7) will result in an action sequence that brings out the

effect of a single causal factor. Having established this, we now introduce a causal perspective on transfer.

4.2.4 Causal Perspective on Transfer

Consider the set of POMDPs P = {p0,p1, . . .} parameterized by the tuple (O, S , A, ϕ, θ, r, H ′ ⊂ H) with

observation space O, state space S , action space A, the transition function ϕ, emission function θ, and the
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Figure 4.1: Out-of-Task Distribution Transfer. Pane A shows a training-time scenario where an agent learns to

interact with environments containing objects for varying values of mass. The causal graph is gated as particular

action sequences either obfuscate or underscore the effects of certain causal factors. Pane B represents the inference-

time scenario where the a causal factor, actuator health, held constant during training is varied at inference.

reward function r, with the set of causal factors H ′ ⊂ H , i.e., subset of the global causal factors, varied

over a range of values and the remaining H −H ′
held constant.

Definition 3 (In-Task-Distribution Transfer). An in-task-distribution transfer occurs when an agent trained

on P is launched into a POMDP p′ where ∀ h ∈ H −H ′ the values assumed by h remain unchanged (assume

the same values as in P).

Definition 4 (Out-of-Task-Distribution Transfer). An Out-of-Task-distribution transfer occurs when an agent

trained on P is launched into a POMDP p′ where ∃ h ∈ H −H ′ which assumes a value different from the

value it had in P .

Consider a transfer learning agent training to lift cubes with varying masses and sizes, i.e., H ′ =

{mass, size}. An In-Task-Distribution Transfer scenario occurs if at test-time it encounters an cube of an

unseen mass/size combination. An Out-of-Task-Distribution scenario occurs if it is required to lift a cube

with a broken actuator. This is because the causal factor actuator ∈ H −H ′
which was held constant

during training (agent trained is using a healthy actuator) is required to lift using a broken actuator at

test-time. We would like to be able to detect such faults while generalizing to known causal factors.
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4.3 Method

Setup We consider the scenario where a learning agent is trained on a set of POMDPs P = {p0,p1, . . .}

parameterized by the tuple (O, S ,A, ϕ, θ, r,H ′ ⊂ H) with observation spaceO, state space S , action space

A, the transition function ϕ, emission function θ, and the reward function r, with the set of causal factors

H ′ ⊂ H , i.e., subset of the global causal factors, varied over a range of values and the remaining H −H ′

held constant.

We assume that the learning agent is able to learn z = Zϕ(p), called belief function, using each of the

training environments which generates a representation for the intervened causal factors, i.e.,H ′ ⊂ H . This

assumption is quite general - the RL systems that are capable of performing well over different environments

can be assumed to either explicitly model such representations (as in [133, 190, 127]) or implicitly (as in [52,

111]). At test time, the agent is launched into a novel environment p′
which is either an In-Task-Distribution

Transfer (see Definition 3) or Out-of-Task-Distribution Transfer (see Definition 4).

4.3.1 Construction of the Belief Set

The agent performs inference in the novel test environment p′
using Zϕ(p

′). We assume that the agent has

access to {Zϕ(p) : p ∈ P}, i.e., the belief representation for the training environments. The agent then

collects all training environments that lie near p′
in the space of the learned belief functions into the ball B

called the belief set defined as,

B := {pi : d(qϕ(z|p′)||qϕ(z|pi)) < ϵ} (4.8)

where d(·|·) is a distance function (e.g., Euclidean) in the latent space and ϵ is a design hyperparameter.

Thus, for example, in a lifting task of cubes of various masses, if the agent fails to lift a cube at test

time, it constructs the belief ball consisting of the training environments with close representations, i.e.,
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heavy cubes and adds them to the belief set B. Depending on the cause for the failure of the agent in

lifting the cube, the situation goes into one of the following branches: (1) The test environment requires

an In–Task-Distribution Transfer, i.e., the test-time block is actually a heavy block or (2) The test

environment requires Out-of-Task-Distribution Transfer, i.e., a broken actuator makes a light block

seem heavy.

4.3.2 Belief Verification

Subsequently, the agent optimizes causal curiosity on B ∪ {p′}. As in Equation (4.7), a low capacity binary

clustering model is considered. Thus, the following optimization procedure is implemented:

argmax
a0:T∈AT

[min{d(o0:T ,o′0:T ) : o0:T ∈ C1,o
′
0:T ∈ C2}−

max{d(o0:T ,o′′0:T ) : o′′0:T ,o0:T ∈ C1}−

max{d(o′0:T ,o′′′0:T ) : o′0:T ,o′′′0:T ∈ C2}]

(4.9)

where O is the observation obtained by applying action sequence a0:T . Clusters C1 and C2 represent the

bimodal model.

In-Task Distribution If the test environment p′
is In-Task Distribution, then the variance of values

assumed by the causal factors H ′
in the set of environments B ∪ {p′} is small and the clusters are not

well-separated. Thus optimizing causal curiosity as in Equation (4.9) will produce action sequences that

result in observations that cluster in a distributed manner as in pane A of Figure 4.2.

Intuitively, if the agent has learnt to interact with blocks of various masses and at test time is presented

with a heavy block, the outcome of its interaction with the test block (i.e., p′
) will not differ significantly in

comparison with the heavy blocks it interacted with during training.
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Figure 4.2: Visualization of the Observation O. Pane A represents the observation variables obtained after the

optimization of Equation (4.9) during an In-Task-Distribution Transfer. Causal Curiosity will be quite low in such a

case as the bi-modal clustering would be poor. Pane B represents the case when OOTD transfer occurs - the causal

curiosity reward would be high as the bi-modal clustering would be near-perfect.

Out-of-Task-Distribution However, during the optimization of Equation (4.9) in the OOTD case, 2

competing causal mechanisms will exist - one induced by the setH ′
and the other from the setH−H ′

. The

mechanism caused by H −H ′
will however dominate as all environments in B will have the same values

forH −H ′
while p′

will have a different value. Thus, the resulting clusters for the causal mechanism from

H −H ′
will be well-separated. Subsequently, the causal curiosity reward (Equation (4.9)) will be higher for

selecting the causal mechanism induced by H −H ′
.

Intuitively, as in the above example of an agent interacting with blocks of varying masses but constant

size ξ, if at test time, the agent is provided with a block of low mass and a new size ξ′ ̸= ξ, the causal

curiosity reward for the size mechanism will be higher because a perfect binary clustering is possible (as in

pane B in Figure 4.2) where one cluster contains observations from training environments (blue cluster)

corresponding to size s while the other cluster corresponds to the test environment with size s′ (red cluster).

Thus, if the test environment p′
lies in its own cluster after optimizing causal curiosity on B ∪ {p′}, then

GalilAI concludes p′
to be OOTD, i.e.,

Is_OOTD(p′) =


1, if p′

lies in its own cluster

0, otherwise

Note, the causal curiosity for a known causal factor, (In-Task-Distribution Transfer) will be less than the

causal curiosity for an unknown causal factor (OOTD Transfer) as seen in Figure 4.2.
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4.3.3 Probabilistic Baselines

A natural extension of Model-based learning methods for OOTD is possible. We question whether such an

extension yields good results. We test whether OOTD Detection is possible by simply learning a model of

the training and test environments and using using the discrepancy of the outputs to detect whether the

learnt test-time model represents a task from OOTD.

We utilize an ensemble of probabilistic neural networks (PNNs) [93, 36], which is a generative neural

network whose output neurons parameterize a probability distribution pθ(y|x); a mean value corresponds

to the believed label ŷ along with some degree of uncertainty θ.

For an environment p, we estimate the environment transition function ϕp(st+1|st,at) using an

ensemble of PNNs fp
ϕ (st+1|st,at)).

We are interested in the disagreement between a novel test environment p′
relative to a training

environment p which we measure using the relative entropy between fp′

ϕ and fp
ϕ given by KL(fp′

ϕ ||fp
ϕ ):

DKL(f
p′

ϕ ||fp
ϕ ) =

1

2
[log

|Σ(fp
ϕ )|

|Σ(fp′

ϕ )|
− k+

(µ(fp′

ϕ )−µ(fp′

ϕ ))TΣ−1(fp
ϕ )(µ(f

p′

ϕ )− µ(fp
ϕ ))+

Tr
{
Σ−1(fp

ϕ )Σ(f
p′

ϕ )
}
]

(4.10)

where k is the dimensionality of the environment’s observation space; st ∈ Rk
, Σ(·) is covariance and µ(·)

is mean and Tr(·) is trace.

We use Negative Log Loss as a scoring rule for PNNs, and KL divergence as a measure of distribution

disagreement. We utilize a thresholding technique here to detect OOTD. We train fp′

ϕ and fp
ϕ over multiple
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random seeds and use the mean KL(fp′

ϕ ||fp
ϕ ) of the first k seeds as the threshold. Detection is then

performed using:

Is_OOTD(p′) =


1, if KL(fp′

ϕ ||fp
ϕ ) > threshold

0, otherwise

4.4 Experiments

Our work has 2 main thrusts - the discovered experimental behaviors and the Out-of-Task-Distribution

Detection obtained from the outcome of the behaviors in environments. We visualize these learnt behaviors

and verify that they are indeed semantically meaningful and interpretable. We quantify the utility of the

learnt behaviors to perform OOTD detection. Causal World. We use the Causal World Simulation [3]

based on the Pybullet Physics engine to test our approach. The simulator consists of a 3-fingered robot,

with 3 joints on each finger. We constrain each environment to consist of a single object that the agent can

interact with. The causal factors that we manipulate for each of the objects are size and mass of the blocks

and the damping factor and control frequency of the robotic motors. The simulator allows us to capture

and track the positions and velocities of each of the movable objects in an environment.

Mujoco Control Suite. We also perform OOTD Detection on 3 articulated agents that try to learn

locomotion - Half-Cheetah, Hopper, and Walker. For each agent type, the causal factors that we intervene

on include the mass of the robot, and wind and gravity in the environment, and the friction between the

robot actuators and the ground.

4.4.1 Generalized Experimental Setup

To test our approach, we train a transfer RL algorithm - in our case, Causal Curiosity [158] on multiple

environments with causal factor A assuming values A = a ∈ A whereA is a set of values causal factor A

can assume. For example, we train an agent to interact with blocks of varying masses (here mass is causal
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factor A). At test time, we generate a range of values of a causal factor B previously held fixed. Thus, in

the above example, having been trained on varying values of mass, we now generate a range of values

for the control frequency (causal factor B) of the robot actuators (previously held constant at some η).

For each pair of values of (B,A) causal factors, we report the accuracy of detection over 10 random seed

experiments. Thus, in the above example, all environments with (control = η,mass = m) are considered

In-Task-Distribution Transfer while all others are Out-of-Task Distribution.

Interpreting Results For each pair of test-time and training-time causal factors, we vary both over a range

of values. Consider for example Figure 4.3, where we vary the mass of the blocks the robot interacts with

during training and at test-time, it receives environments with a different perception frequency. During

training in Figure 4.3 Pane C, the perception frequency was at 1 (corresponding to the column at Perception

Frequency = 1). For each pair of (Control Frequency, Mass), we run our method over 10 random seeds. The

value at each (x, y) position corresponds to the number of times during the 10 runs, GalilAI concluded that

the test environment was OOTD. Figure 4.3 Pane C is an example of perfect detection - no false positives

(column above x = 1 is zero) and 100% detection when Perception Frequency is varied. Other experiments

depict varying degrees of detection success.

4.4.2 Causal World Experiments

During training, we vary either the mass or size of the block in an environment. At test time, the agent

interacts with an environment with 3 possible errors - (1) Distributional Shift of the Environment:

Change in the physical features of the block (2) Perception Defect: Frequency of perception changes (i.e.,

framerate of sensors) which affects the perception-to-action loop and (3) Actuator Defect: the damping

coefficient of the arm actuators is varied, which affects the dynamics of the robotic arm.

Figure 4.3 depicts experiments withmass and size of blocks as training-time causal factors and Perception

Frequency, Damping Factor and Mass as test-time causal factors. Each of these experiments yield no false
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Figure 4.3: Causal World experiments. Subfigures A – C refer to GalilAI, and subfigures D – F refer to the

probabilistic baseline. Each (x, y) pair on the plot corresponds to an (unseen, seen) pair of causal factors. The value
at each (x, y) pair depicts the performance of each method across measure performance as the number of correctly

classified environments on 10 different random seeds. In-distribution value of mass is 0.5; Damping Coefficient is

0.5; Perception frequency is 1.0. Ideally, the column above the training value of the OOTD causal factor should be 0,

while all other columns should be 10 as is the case in Pane C.

positives as the columns above in the fixed value of the test-time causal factor have zero detections.

Figure 4.3 Pane C shows the agent has a perfect detection performance in detecting the perception defect.

Figure 4.3 panes A and B show that detection is successful when the test-time value of the unseen causal

factor is some distance away from its constant value during training. The agent is more likely to detect an

unknown causal factor when we make a larger change to it (larger values near the left and right border).

4.4.3 Mujoco Experiments

We perform experiments with the Mujoco control suite [167] as well. During training, we manipulate the

mass of the friction and the friction coefficients between the agent actuators and ground. At test time, we

manipulate the wind and gravity in the environment and the mass of the agent. The in-distribution value

of wind is 0.0, gravity is −9.8 and mass is 1.0. Discerning wind while being invariant to agent mass (Panes

A and D in each sub-figure of Figure 4.4) is a relatively easy endeavour with the half-cheetah resulting in

the highest accuracy across each of the random seeds. The task of discerning mass while being invariant
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to friction also yields high accuracy of detection when the test mass varies significantly in comparison

with training time mass (red columns on right and left edges of Panes C and F in Figure 4.4). However, it

suffers from poor detection at 0.8× and 1.2× the default mass for cheetah and hopper. The hardest task is

that of discerning gravity while being invariant to mass - a task that requires discovering the Galilean

Equivalence Principle, i.e., that the acceleration due to gravity is independent of mass. While the success

of GalilAI is limited when gravity is in the vicinity of 9.8, it begins to successfully learn to detect changes

in gravity as it deviates from 9.8.

4.4.4 Interpretation of Learned Behaviours

For visualizations of our method, see here. We analyze whether the discovered experimental behaviors are

actually semantically meaningful. We find that the agent is able to discover many semantically meaningful

behaviors that underscore the effect of a new causal factor previously held constant during training. Chiefly,

we find that the 17th century philosopher Galileo Galilei and his namesake GalilAI agree that mass and

gravitational acceleration are decoupled - GalilAI learns a free-falling behavior that mimics Galileo’s

experiments of dropping objects to discern the gravity of an environment whilst being invariant to the

agent mass.

In Mujoco Experiments, for mass as training time causal factor and wind as test-time factor, the agent

learnt to use its body as a sail and allow the wind to carry it along. It also learnt to do front-flips and rolls in

the direction of the wind, using the wind to help it along. For friction as training causal factor and mass as

the test time causal factor, the agent also learnt to perform headstands to test out its mass while avoiding

any horizontal locomotion allowing it to be invariant to the friction coefficients.

In Causal World Experiments, for size as training time causal factor and mass as test-time factor, the

agent learnt a relay-kick action when one of the finger push the object to the other finger, who makes a
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further push on it. This relay can only be finished on small mass blocks, thus distinguishing the causal

factor.

4.5 Conclusion

In this work, we propose a novel task - that of Out-of-Task Distribution (OOTD) Detection and offer a

causally inspired solution for the same. We find that simplistic extensions of existing model-based methods

result in suboptimal performance with either low-detection accuracy and high false positive rate. We show

the efficacy of our method in both a variety of embodied robotic environments spanning 2 simulation

engines. We find GalilAI has the ability learn complex causal mechanisms and is a first step towards safer

transfer/meta-RL.

While curiosity-based methods can allow one to learn behaviors without external supervision, they

can be inefficient for long-horizon tasks. In such settings, demonstrations can help. The next chapter,

SHERLock studies how to learn event representations from human demonstrations.
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Figure 4.4: Mujoco experiments. Plots I, II and III correspond to Hopper, Walker and Cheetah environments

respectively. Within each, subfigures A – C refer to GalilAI, and subfigures D – F refer to the probabilistic baseline.

Each (x, y) pair on the plot corresponds to an (unseen, seen) pair of causal factors. The value at each (x, y)
pair depicts the performance of each method across measure performance as the number of correctly classified

environments on 10 different random seeds. In-distribution value of wind is 0.0; gravity is −9.8; mass is 1.0.
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Chapter 5

SHERLock: Self-Supervised Hierarchical Event Representation Learning

5.1 Introduction and Related Work

Multi-modal Event Representation learning in demonstration videos is a challenging problem. Existing

methods attempt to chunk videos into events using prohibitively expensive, heavily annotated datasets

containing labels for objects per frame and timestamps for activities in the video. Further, existing methods

suffer from sub-optimal performance when learning event representations for long sequences. In contrast,

humans excel in such scenarios - given a video demonstration (Figure 5.1) of a complex task (such as

cooking), humans can subconsciously abstract events (such as boiling, frying, pouring, etc.) that succinctly

encode sub-sequences in such demonstrations [121]. These events are hierarchical in nature - lower-level

events are building blocks for higher-level events [113].

To learn such hierarchical events, we propose an end-to-end trainable Seq2Seq architecture, SHERLock

(Self-supervised Hierarchical Event Representation Learning), for multi-modal hierarchical representation

learning from demonstrations. SHERLock takes a long-horizon sequence of demonstration images (in our

case, chess, tutorial, and cooking) and commentary as input. It can then isolate semantically meaningful

subsequences in input trajectories. Through ablations, we show how variants of SHERLock discover

meaningful subsequences using only a sequence of images. Our method does not require timestamps of

video and commentary, nor does it need any alignment annotation between video and textual inputs.
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Figure 5.1: Overview of our approach. SHERLock learns a hierarchical latent space of events describing long

horizon tasks like cooking using tutorial video and associated textual commentary.

We only assume the order of the events and narration are preserved in the input data. Our architecture

discovers event representations along with their hierarchical organization without any supervision.

SHERLock improves upon the state-of-the-art of related work in the following ways:

1. Self-supervised: State-of-the-art approaches in allied fields [32, 17, 168, 104, 188, 162] (skill learning,

event detection etc.) require large datasets of demonstrations, with expensive human annotations for

timestamps corresponding to each event. [154] discover motor primitives from demonstrations but in

a non-hierarchical fashion. SHERLock, on the other hand, abstracts hierarchical event representations

from multimodal data, i.e. it divides long-horizon trajectories into a hierarchy of semantically

meaningful subsequences, without requiring any temporal annotations.

2. Long Horizon: Long-horizon tasks remain the bane of learning systems, due to an aggregation of

sub-optimal behavior over a horizon [117]. Previous works in imitation learning [142, 49, 124, 118,

5, 129], show how agents can learn representations for events in simple tasks like cart-pole from

demonstrations. More recently, [143] shows that agents can learn action representation using a large

corpus of observation data, i.e., trajectories of states and a relatively smaller corpus of interaction

data, i.e., trajectories of state-action pairs. However, these approaches all restrict themselves to short

horizons, while SHERLock is able to generate meaningful event representations for long-horizon

tasks like cooking and chess.
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3. Offline abstraction: Recent works in unsupervised skill/event discovery [50, 155, 178, 77] require

costly interactions with an environment to discover skill sequences, an infeasible assumption in

domains such as cooking or healthcare, where exploration is potentially dangerous. [50] learn a large

number of low-level sequences of actions by forcing the agent to produce skills that are different

from those previously acquired. Similarly, [155] attempt to learn skills such that their transitions

are almost deterministic in a given environment. However, these approaches require access to an

environment while SHERLock discovers these representations from offline demonstrations, utilizing

large amounts of demonstration data.

4. View Invariance: SHERLock abstracts events from demonstrations of a variety of cooking tasks.

The demonstration videos originate from a number of sources, varying in camera angles, instructional

styles, etc. Recent works in unsupervised skill/event learning are more restrictive [154, 50, 155],

requiring that demonstration data originate from a single viewpoint, with coincident state and action

spaces.

5. Multi-modality and Interpretability: SHERLock learns a joint latent space for events utilizing

both textual and visual inputs which are available in typical human demonstrations. This allows us to

both visualize the physical manifestation of a temporal event, and describe in words the outcome. This

is an improvement upon recent works in unsupervised skill learning, which utilize demonstrations

corresponding to low dimensional state spaces and simple control signals [129, 118, 178, 77].

6. Hierarchical: We find that hierarchical events abstracted by SHERLock are indeed more semantically

meaningful and align more closely with ground-truth annotations for events in real-world datasets

(YouCook2 [185] , Chess Opening and TutorialVQA [38]) than other non-hierarchical approaches

[154]. See Non-Hierarchy in Table 5.1.
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Figure 5.2: Overview of our approach. SHERLock learns a semantically-meaningful hierarchical embedding space

which allows it to perform complex downstream tasks such as temporal event segmentation and label prediction.

We start by encoding video and text streams into latent representations separately (s0:n and w0:m). These are then

further encoded into a hierarchy, currently consisting of low-level (zL) and high-level (zH ) events. During training,

we swap the representation hierarchies between video and text, such that the training loss Soft-dtw(s0:m, s′0:m) and

Soft-dtw(w0:n,w
′
0:n) will align both representations.

5.2 Approach

5.2.1 Overview

We explain the motivation for SHERLock with an example in the domain of cooking demonstrations.

Consider a long horizon demonstration for example, of an Eggs Benedict recipe. Here, low-level events

might include boiling water or addition of eggs to water. Several such low-level events may combine to

produce a high-level event - e.g., poaching an egg, which consists of boiling water, addition of egg to water,

and finally removal after two minutes of cooking. SHERLock learns embeddings for such low and high-level

events.

Broadly, SHERLock (Figure 5.2) can be described as a multi-modal, hierarchical, sequence-to-sequence

model. The model receives as input a sequence of pre-trained ResNet-50 Embeddings ([68]), in addition to a

sequence of pre-trained BERT-base [44] embeddings. The two modalities are encoded separately by two

transformer models into a pair of sequences of low-level latent event embeddings (e.g., boiling water or

placing eggs in water, derived from either video or text). Such low-level sequences are further encoded

by another pair of transformers that generate sequences of high-level event embeddings (e.g., poaching

an egg). The embedding pairs are aligned through an L2 loss, forcing both representations to correspond
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to one another. Subsequently, a cross-modal decoding scheme is implemented: visual embeddings are

used to re-generate word / BERT-base embeddings, while textual embeddings are used to generate video

frame ResNet embeddings. After successful training, the system hence is expected to generate modality

and domain invariant embeddings for temporal events. Those embeddings could subsequently be used for

event classification and robotic skill learning (to be developed in future work).

5.2.2 Hierarchical Events

Intuitively, we define an event as a short sequence of states which may occur repeatedly across several

demonstration trajectories. Events have an upper limit on their length in time steps. They can be obtained

from both a sequence of demonstration images (S = s0:m) and from the associated textual description (W =

w0:n). Additionally, they are hierarchical in nature - thus, low-level and high-level events representations

are denoted by zL and zH , respectively (while the following discussion is restricted to two levels, we explore

the effect of more levels in Table 5.2). Given a low-level event representation, an associated sequence (of

words or images) can be obtained using a decoder Φx−dec
:

xt|zLt ∼ N (µx,t, σ
2
x,t)

where [µx,t, σ
2
x,t] = Φx−dec(zLt ,x≤t−1)

(5.1)

where X = x0:T may correspond to the flattened embedding of words W or images S, and N (·|·) is a

Gaussian distribution (assume prior) with parameters generated by the neural network ΦH−dec
. Events

also exhibit a temporal hierarchy. High-level events are generated as:

zHt |zH≤t−1 ∼ N (µH,t, σ
2
H,t)

where [µH,t, σ
2
H,t] = ΦH−dec(zH≤t−1)

(5.2)
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Given such a high-level event zHt , the associated sequence of low-level events can be approximated through

a function ΦL−dec
as:

zLt |zHt , zL≤t−1 ∼ N (µL,t, σ
2
L,t)

where [µL,t, σ
2
L,t] = ΦL−dec(zHt , zL≤t−1)

(5.3)

Thus, the resulting joint model mapped over trajectories of images p(S, zL, zH) factorizes as:

p(s0)
m∏
t=1

p(st|zL≤t, s<t)p(z
L
t |zL<t, z

H
<t)p(z

H
t |zH<t) (5.4)

and the resulting joint model mapped over trajectories of words p(W, zL, zH) factorizes as:

p(w0)
n∏

t=1

p(wt|zL≤t,w<t)p(z
L
t |zL<t, z

H
<t)p(z

H
t |zH<t) (5.5)

The transition functions p(zLt |zL<t, z
H
<t) and p(zHt |zH<t) are also learned using fixed length transformer

models [172].

5.2.3 Architecture

SHERLock consists of 2 pairs of encoding transformers - one pair for each of the modalities. For a modality

X , where X ∈ set of modalitiesM = {images,words}, the pair of encoders consists of q(zLx |X), which

encodes the modality X into low-level events zLx and q(zHx |zLx ) which encodes low-level events zLx into

high level events zHx .

zLx = q(zLx |X) and zHx = q(zHx |zLx ) (5.6)

Analogously, SHERLock also contains 2 pairs of decoding transformers - one pair for each of the modalities.

Decoding occurs in a cross-modal manner - textual events generate video and visual events generate text.
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Thus, for a modality X , where X ∈ set of modalitiesM = {images,words}, p(z′x
L|zHM−{x}) generates

low-level events from high-level events of the modality M − {X} and p(x′|z′x
L) regenerates the modality

X .

z′x = p(z′x
L|zHM−{x}) and x′ = p(x′|z′x

L
) (5.7)

5.2.4 Training Metrics

5.2.4.1 Soft-Dynamic Time Warping (Soft-DTW)

Given two trajectories x = (x1,x2, ...xn) and y = (y1,y2, ...ym), the soft-DTW(x,y) ([39]) computes

the discrepancy between x and y as,

soft-DTW(x,y) = minγ{⟨A, ∆(x,y)⟩, A ∈ An,m} (5.8)

where A ∈ An,m is the alignment matrix, ∆(x,y) = [δ(xi,yi)]ij ∈ Rn×m
and δ being the cost function.

minγ
operator is then computed as,

minγ{a1, · · · ,an} =


min i≤n ai, γ = 0,

−γ log
∑n

i=1 e
−ai/γ , γ > 0.

(5.9)

For our experiments, we use L2 distance as δ and γ = 1.

5.2.4.2 Learning Objective

We emphasize that we do not require supervision for hierarchical temporal segmentation, i.e., we do not

require annotations which demarcate the beginning and ending of a event, both in language and in the
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Figure 5.3: t-SNE of low-level events and their corresponding high-level mappings discovered by SHERLock
on the YouCook2 dataset. We obtain clusters of low-level events such as frying, pouring while frying, seasoning

etc. We also obtain two high-level events that correspond to events that require heating and those that do not.

space of frame’s timestamps. Our approach uses several loss terms between network outputs to achieve our

objective.

Ldyn = soft-DTW(ZL
w,Z

′L
w) + soft-DTW(ZL

s ,Z
′L
s )+

soft-DTW(S,S′) + soft-DTW(W,W′)

+soft-DTW(ZH
s ,ZH

w )

(5.10)

Lstatic = L2(Z
H
s ,ZH

w ) + L2(Z
′L
s ,Z

′L
w) (5.11)

We then define our total loss as, Ltotal = Ldyn + β ∗ Lstatic. We posit that this loss function provides

the inductive bias necessary for learning the event latent space. The term soft-DTW(S,S′) ensures

reconstruction of demonstration frames from the textual events, while soft-DTW(W,W′) ensures the

generation of textual description from visual events. L2(Z
H
s ,ZH

w ) and L2(Z
′L
s ,Z

′L
w) aligns the textual and

visual event spaces.

5.2.5 Evaluation Metrics

The ground-truth events in the dataset and the events generated by SHERLock may differ in number,

duration, and start-time. To evaluate the efficacy of SHERLock in generating events that align with the

65



human-annotated events in our dataset, it is imperative that we utilize a metric that measures the overlap

between generated events and ground truths and also accounts for this possible temporal mismatch.

Consider the search series X = (x1,x2,x3...xM ) and target series T = (t1, t2, t3...tN ) where X

corresponds to the end-of-event time stamp for each event as generated by SHERLock for a single long-

horizon demonstration trajectory. Thus, the ith event abstracted from SHERLock starts at time xi−1 and

end at time xi. Similarly, T corresponds to the end-of-event time stamp for each ground-truth event in the

demonstration trajectory, where the jth ground truth event starts at time tj−1 and ends at time tj . Note

that both x0 and t0 are equal to zero i.e. we measure time starting at zero for all demonstration trajectories.

To meaningfully compute the intersection over union (IoU) between ground truth and outputs

from SHERLock, we first need to align the two representations using dynamic time warping (DTW; [12]).

This implies calculating ∆(X,T), solving the following DTW optimization problem ([12]), ∆(X,T) =

minP∈P
∑

m,n∈P δ(xm, tn),

where the X and T correspond to the search and target series respectively and δ corresponds to a

distance metric (in our case the L2 norm), measuring time mismatch.

∆(X,T) therefore corresponds to the trajectory discrepancy measure defined as the matching cost for

the optimal matching pathP among all possible valid matching paths P (i.e., paths satisfying monotonicity,

continuity, and boundary conditions). From this optimal trajectory we can also obtain the warping function

W such thatW (xi) = tj , i.e. we find the optimal mapping between the ith event ending at time xi and the

jth event ending at time = tj . The resulting Intersection over Union for a single long-horizon trajectory,

Time-warped IoU (TW-IoU), is:

∑
ti

∑
xj :W (xj)=ti

min(ti, xj)−max(ti−1, xj−1)

maxxj :W (xj)=ti{max(ti, xj)}−minxj :W (xj)=ti{min(ti−1, xj−1)}
(5.12)
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Method TW-IoU
Non-Hierarchical

[154] 14.47± 1.10
Non-Hierarchical w/ comment 14.84± 1.08
GRU Change Point Prediction 22.85± 0.74

Clustering (ResNet32)

([68]) 31.22± 0.05
Clustering (HowTo100M)

([105]) 32.17± 0.04

SHERLock-GRU

w/o comment (ours) 35.99± 1.13
SHERLock

w/o comment (ours) 39.45± 1.25
SHERLock

w/ comment (ours) 47.44± 1.64
GRU-Supervised

Segment Prediction 53.12± 1.09

Table 5.1: TW-IoU scores for single level events predicted by the baselines along with the TW-IoU scores for the

high-level events abstracted by our proposed technique SHERLock.

5.2.6 Alignment during Inference

We calculate the DTW path [12] (γ = 0 case in eqn. (9)) between a decoded sequence and a ground truth

video to obtain the optimal alignment between ground truth video frames and predicted video frames (high

& low-level). This alignment is subsequently used during the calculation of the TW-IoU scores.

5.3 Experiments

Datasets: YouCook2([185]) dataset comprises of instructional videos for 89 unique food recipes. Recom-

mending Chess Openings∗ dataset consists of opening moves in the game of Chess. TutorialVQA ([38])

consists of 76 tutorial videos pertaining to an image editing software.

5.3.1 Visualizing Hierarchy

Here we analyze whether the discovered events are human interpretable i.e. are the temporal clusters

within a single demonstration semantically meaningful?. We find that SHERLock abstracts several useful

∗

https://www.kaggle.com/residentmario/recommending-chess-openings
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Ablation Variants TW-IoU

SHERLock

w/o comment w/o L2 loss 38.46

SHERLock

w/o comment w/o cross-decoding 37.67

SHERLock

Single-level Decoding 20.33

SHERLock

w/o comment w/o low-align loss 18.99

SHERLock

Three-level Hierarchy 37.61

SHERLock

w/o comment (200 Frames) 39.45

SHERLock

w/o comment (64 Frames) 33.41

SHERLock

w/o comment (32 Frames) 12.79

Table 5.2: TW-IoU scores for ablation experiments. Note that the reported TW-IoU scores are calculated with

reference to high-level annotations available in the dataset (low-level annotations are unavailable).

Method TW-IoU
Non Hierarchy ([154]) 4.47± 1.12

SHERLock w/o comment (ours) 40.69± 1.66
SHERLock w/ comment (ours) 52.66± 1.72

Table 5.3: TW-IoU scores on the TutorialVQA dataset

human interpretable events without any supervision. See Figure 5.4 and 5.5 for results. For instance, in a

pasta-making demonstration in YouCook2, a single event corresponding to the description “heat a pan add

1 spoon oil and prosciutto to it”, is divided into low level events corresponding to “heat pan”, “add oil” and

“prosciutto”. Also in Figure 5.3, a single high-level event corresponding to “editing image text” is divided into

low level events like “changing text color”, “text font”, “typekit font”, etc. Note that no explicit event time

labels were provided to SHERLock, indicating that our model can abstract such coherent sub-sequences,

thus taking the first step towards video understanding. Figure 5.3 shows the t-SNE [103] for the low-level

event representations abstracted by SHERLock. The low-level events aggregate into clusters corresponding

to frying, pouring while heating, seasoning. We also visualize the events abstracted by SHERLock when

trained on chess opening data. The events learnt here also produce coherent, human-interpretable results.
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Figure 5.4: Hierarchy of events discovered by SHERLock using openings data in Chess. At a high level,

SHERLock correctly identifies events corresponding to the Blackmar-Diemer Gambit and the Pietrowsky Defense. At

a low level, it identifies events such as “d4 d5.. and e4 d3 ..” that are used across several openings.

5.3.2 Comparison with Baselines

We evaluate the performance of SHERLock quantitatively on YouCook2 and TutorialVQA and quantify its

ability to generate coherent events that align with the human annotated ground truths using the TW-IoU

metric. We compare our approach with 6 baselines.

GRU Time Stamp Prediction: A supervised baseline comprising of a GRU-based encoder [33] that

sequentially processes the ResNet features corresponding to frames in a video followed by a decoder GRU

[8] that attends to encoder outputs and is trained to sequentially predict end-of-event timestamps of each

meaningful segment (variable in number) in the video.

Non-Hierarchical w/o comment: We implement the [154] approach (SOTA in unsupervised skill learning

w/o environment) which takes as input a sequence of video frames and discovers a single level of events

without any hierarchy.

Non-Hierarchical w/ comment: A modified multi-modal version of Non-Hierarchical where frames and

words are utilized to form a non-hierarchical latent event representation. This baseline ascertains the effect

of both hierarchical and multi-modal learning on the representations obtained.

Clustering - ResNet32 Embeddings: Given an input sequence of frames, we define the weight function

based on their temporal position in the sequence and also the L2 distance between the frame embeddings.

Then we use standard K-means algorithm (we find best K=4) to cluster the frames based on the weighting
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function defined and use the clusters formed to predict the temporal boundaries.

Clustering - HowTo100M Embeddings: We utilize the pre-trained embeddings from the supervised

action recognition dataset and method [105] and apply a K-means (we find best K=4) clustering on them.

GRU Supervised Segment Prediction: Instead of predicting end time stamps of each segment (as in

GRU Time Stamp Prediction), the decoder is trained to predict/assign identical ids to frames which are

part of the same segment. Further, the model’s decoder is trained to assign different ids to frames part of

different segments while frames not part of any meaningful segment in the ground truth are trained to

have a default null id - 0.

Table 5.1 summarises and compares the TW-IoU computed between ground truth time stamp annotations

and predicted/discovered segments. SHERLock achieves the highest TW-IoU when compared with all other

unsupervised baselines. We find that SHERLock discovers events that align better with the ground truth

events (SHERLock performs ∼ 23% better) compared to Non-Hierarchical [154] performing at par with

the supervised baselines.

Figure 5.5: Example Hierarchy of events discovered by SHERLock on the YouCook2 dataset.

5.3.3 Ablation Experiments

Effect of Sampling Rate on the quality of hierarchy For YouCook2, we cap the length of a frame

sequence to 200 frames (down-sampled from the original frames provided in the dataset due to memory
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constraints). Subsequently, we analyze the trade-off between sequence length and performance. This

provides an insight into granularity of information required to discover naturalistic hierarchies. Interestingly,

we don’t observe a linear drop in performance with a reduction in the number of frames (refer Table 5.2).

Effect of Guidance through Commentary We study the effect that language has on event discovery by

comparing SHERLock without comment, which discovers event hierarchy using just frames and SHERLock

which additionally uses word embeddings as a guide (as in Figure 5.2). Language improves the TW-IoU

by∼ 10%, indicating that using commentary enables SHERLock to detect more precisely the boundaries of

segments corresponding to various events in a trajectory. Further, we find that the implicitly hierarchical

nature of the language provides inductive bias to the model to learn a more natural hierarchy of events.

Number of Levels in HierarchyWe explore the effect of a third level of hierarchy, through additional

transformers during the encoding and decoding phase. Thus, our architecture generates 16 low-level,

8 mid-level and 4 high level events. We find that this third level of event provides only a marginal

improvement over the TW-IoU scores which we report in table 5.2. Additionally, we find that this increases

the GPUmemory requirements during training due to the increased number of model parameters in memory

along with the additional losses (calculating Soft-DTW losses means solving a dynamic programming

problem).

Model Complexity: SHERLock uses the Transformer architecture for modeling Φ and p() which makes

the model a bit heavy to train. So, we experiment by replacing all the transformer modules with simpler

GRU modules keeping same number of layers (See SHERLock-GRU in Table 5.1). We observe that there is

not much difference in performance (∼ 3.5%). Also it still outperforms all other unsupervised baselines.
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This indicates that the attention mechanism in Transformers does help us learn better representations but

most of the gain can be attributed to the model architecture.

Components and Losses: We perform ablation experiments to ascertain the need for each of the modules

and losses used in SHERLock. We remove the soft-DTW(ZL
s ,Z

′
s
L) loss from our SHERLock to highlight

its importance in maintaining the fidelity of the reconstruction scheme. This loss guides the alignment

between the encoded low-level events (ZL
s ) and the reconstructed low-level events (Z′

s
L
). We find that

removing this loss reduces the TW-IoU scores drastically (see SHERLock w/o comment w/o low-align

loss in Table 5.2).

We also evaluate a simplified version of the SHERLock w/o commentary model, where we remove the

Z′L = z′0:7
L ∼ p(z′L|zH) modules and re-generate the word and visual sequence embeddings from the

high-level events as X′ = x′
0:T ∼ p(x′|zH). We see this results in the drop of TW-IoU (Table 5.2), thus

confirming our need for the step-wise encoding-and-decoding scheme used. We call this the SHERLock

Single-level Decoding baseline.

5.4 Conclusion

In this paper, we provide a self-supervised method (SHERLock) capable of hierarchical and multi-modal

learning. It can discover events and organize them in a meaningful hierarchy using only demonstration

data from chess openings, tutorials, and cooking. We also show that this discovered hierarchy of events

helps predict textual labels and temporal event segmentations for the associated demonstrations.

One limitation is that we can’t use longer video sequences for training since computing soft-DTW

requires solving a DP problem in quadratic space. Also sometimes specific nouns like "lobster" are replaced

with more commonly appearing nouns like "patty", which is due to the fact that grounding of nouns using a

few images is very difficult. This could be an interesting direction for future work. Also, we would explore
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curriculum learning where the discovered event hierarchy by SHERLock is used to generate curricula

where lower-level events would be taught first followed by higher-level events and also be used for option

discovery and training in reinforcement learning.

Learning event representations is useful, but how can we adapt them into something actionable for a

robot to execute? The next chapter Video2Skill studies how to adapt event representations to robot skills.
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Chapter 6

Video2Skill: Adapting Events in Demonstration Videos to Skills in an

Environment using Cyclic MDP Homomorphisms

6.1 Introduction and Related Work

Offline reinforcement learning has been of substantial interest to the community with continued efforts in

attempting to teach RL agents to perform tasks simply from a corpus of expert demonstration data ([96, 86,

2]). While offline RL holds promise, it is challenging because it requires making counter-factual queries under

distributional shift (i.e., the agent cannot explore the effects of hypothetical action sequences not present in

the training data; [96]). Additionally, current offline RL formulations make 2 constraining assumptions -

first, they require domain coincidence, i.e., that the state and action spaces of the demonstrations and

the downstream agent being trained coincide. This can be restrictive especially in applications to domains

such as robotics, where expert demonstrations in the same domain may not be available. Consider, for

example, attempting to teach a robot to perform medical surgery. In such a scenario, current offline RL

formulations would fail as they would require a dataset of demonstrations from an expert robot performing

surgery. However, generating such an expert agent using vanilla RL in a safety-critical application would

be disastrous due to exploration - a classic chicken-or-egg conundrum. Instead, it is more likely that
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demonstrations from a human expert would be available, and thus we need new methods to become able to

exploit them.

Second, offline RL assumes task coincidence, i.e., it attempts to train agents to perform the same

tasks as made available in the demonstration dataset, e.g., a demonstration of a robotic manipulation task,

say grasping, will result in a policy that enables an agent to grasp. Combined, these assumptions mean

that offline RL assumes that the MDPs on which the expert demonstrates its behavior and on which the

downstream agent are trained to behave in are the same.

Hence, these assumptions make offline RL difficult to apply to practical robotic scenarios. In this

work, we attempt to relax these assumptions. We utilize the large corpus of online human video tutorials

of complex long-horizon tasks to teach a robotic agent to perform semantically meaningful behaviors

in its own environment. Inspired by [187], our work attempts to learn adaptable short-horizon motion

representations - called events - using domain randomization on human demonstrations. We then utilize a

small amount of environment-specific demonstration data to adapt this latent space for domain-specific

behavior.

We improve upon the state-of-the-art in the following ways:

Unsupervised Event Representation Learning: Learning temporal representations from demonstra-

tions ([32], [17], [168]) (e.g., skill learning, event detection, etc.) typically requires large datasets of demon-

strations, with expensive human annotations for timestamps corresponding to each event. Video2Skill,

on the contrary, learns event representations without temporal supervision, i.e., it divides long-horizon

trajectories into semantically meaningful subsequences, without access to any temporal annotations that

splits these trajectories.

Domain and Task Invariance: Video2Skill abstracts events from demonstrations of a variety of

cooking tasks. Additionally, these videos originate from a number of sources, varying in camera an-

gles, instructional styles, etc. Thus, through domain randomization, our architectures generate domain

75



invariant event representation. Unsupervised skill learning typically has more restrictive assumptions

([154],[50],[155]) requiring that demonstration data originate from a single domain, with the same state

and action spaces.

Offline and Reward-free Skill Learning: Unsupervised skill discovery ([50, 155, 178]), [77]) also

typically requires costly interactions with an environment to discover skill sequences. Such assumptions

can be infeasible in domains such as healthcare, where active exploration may not only be impossible,

but potentially dangerous. [50] learn a large number of low-level sequences of actions by enforcing that

the corpus of skills acquired is diverse. Similarly, [155] attempt to learn skills such that under a skill,

subsequent transitions are almost deterministic in a given environment. Video2Skill first discovers event

representations from freely available human demonstration data, and subsequently adapts them to learn

environment-specific skills.

Long Horizon Learning from Demonstration: Long-horizon tasks remain the bane of decision-

making algorithms, especially in the offline-learning scheme, due to an aggregation of sub-optimal behaviors

over a horizon ([117]). Imitation learning ([49], [5], [142], [124], [129], [118]) has shown how agents can

learn simple tasks from demonstrations. More recently, [143] shows that agents can learn to maximize

external reward using a large corpus of observation data, i.e., trajectories of states, and a relatively smaller

corpus of interaction data, i.e., trajectories of state-action pairs. However, such approaches are restricted to

short horizons, while Video2Skill is able to generate skills for long-horizon tasks like cooking.

Multi-modal World Models: Video2Skill learns representations for events occurring free-flowing

tutorial videos utilizing both textual and visual inputs which are available in typical human demonstrations.

Once adapted to a specific environment, it describes the model of the environment. We show that these

World Models outperform typical model ([73, 112, 94, 37]) learning methods on multi-step prediction.

Incorporating Prior Knowledge into Decision Making: We propose a adaptation based method to

incorporate prior knowledge into decision making - both for model-based and model-free RL. We pre-train
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a Backbone network on real world cooking data and subsequently learn environment-specific adapter

functions to model dynamics of a kitchen environment. We show how the pre-training aids efficient

dynamics learning and yields semantically meaningful representations.

6.2 Methods

Tutorial videos contain informative demonstrations of complex real-world tasks. These consist of humans

acting as expert agents in an abstract Markov Decision Process (MDP). While we do not have access to the

state and action spaces of such an abstract MDP, we do, however, have access to proxies for them through

the video frames and textual commentary in the tutorial video, i.e., state→ action is like video frame→

commentary.

These video demonstrations consist of several events which are described in words and viewed through

short sequences of video frames. We utilize such real world human demonstration data to learn environment

agnostic event representations. We do this using domain randomization - by training amulti-modal temporal

auto-encoder-style architecture (called Backbone network) on human cooking demonstrations consisting

of a variety of cooking recipes and tasks. Additionally, our data comes from many sources - with a variety

of camera angles, lighting, etc. The temporal autoencoder thus generates domain and task independent

embeddings for sequences of videos and words. Thus, given a human demonstration of say, poaching eggs,

our architecture can isolate semantically meaningful subsequences, like cracking an egg, pouring water, etc.

These event representations encode both a sequence of observations in the domain of the human cooking

videos, and the associated "action sequences" in the form of textual tutorial commentary.

We then utilize a small amount of demonstration data in the environment of a real robotic agent.

This data consists of sequences of states and actions of an expert robot demonstrating related tasks in

the environment; for example, the robot arm opening cabinet doors, etc., but not cooking. We then

force the representations of these robotic demonstrations to be in same space as those of human cooking
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Figure 6.1: Backbone Network. Video2Skill contains a backbone temporal autoencoder which learns a semantically-

meaningful embedding space, encoding events that occur in natural free-flowing tutorial videos, without explicit

temporal supervision for event start and end timestamps. Section 6.2 contains details of components.

demonstrations. This is achieved using a pair of MDP Homomorphisms which map the robotic MDP to

the human abstract MDP and vice-versa. The homomorphisms are learnt in a cyclical manner, thereby

requiring no supervision during training. Using the homomorphisms, we can later translate cooking events

(e.g., cracking an egg) into the target robotic space and vice-versa, resulting in zero-shot skill generation.

Thus, state→ action→ skill is analogous to video-frame→ commentary→ event.

6.2.1 Event Representation Learning from Demonstration Videos

Intuitively, we define an event as a short sequence of states which may occur repeatedly across several

demonstration trajectories. Events have an upper limit on their length in time steps. They can be obtained

from both a sequence of demonstration images (video data) (V = v0:m) and from the associated textual

description (W = w0:n). Given an event representation, an associated sequence (of words or images) can

be obtained using a decoder Φx−dec
:

xt|zt ∼ N (µx,t, σ
2
x,t) where [µx,t, σ

2
x,t] = Φx−dec(zt,xt−1) (6.1)
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where X = x0:T may correspond to the flattened embedding of words W or images V, and N (·|·) is a

Gaussian distribution (assume prior) with parameters generated by the neural network Φx−dec
. Thus, the

resulting joint model mapped over trajectories p(X, z) factorizes as:

p(x0)

T∏
t=1

p(xt|z≤t,x<t)p(zt|z<t) (6.2)

The functions Φx−dec
and the transition function p(zHt |zH<t) are approximated by sequence-to-sequence

models (in this case transformers ([172])).

Encoding: An input sequence of video frames is downsampled to 200. The visual encoderZv = z0:16 ∼ q(zv|V)

generates a sequence of event representations such that each event zv ∈ R768
. Similarly, textual events

Zw = z0:16 ∼ q(zw|W) are also generated using seq2seq transformer models.

Decoding: We decode in a cross-modal manner, where the events abstracted from the visual domain are

used to re-generate the textual description and vice-versa. In what follows, prime notation refers to a

re-generated value. Thus, the visual events are used to regenerate words usingW′ = w′
0:n ∼ p(w′|zv) and

textual events are used to subsequently regenerate demonstration frame embeddingV′ = v′
0:m ∼ p(v′|zw).

Learning Objective: We emphasize that we do not require supervision for temporal segmentation, i.e.,

we do not require annotations which demarcate the beginning and ending of a event, both in language and

in the space of video frame timestamps. Our approach uses several loss terms between network outputs

to achieve our objective. The soft-DTW ([39]) is used to compute the match between two sequences of

varying length. It is calculated between several sequences to generate the pre-training loss term, Lpretrain.

Lpretrain = soft-DTW(V,V′) + soft-DTW(Zv,Zw) + soft-DTW(W,W′) (6.3)

We posit that this loss function provides the inductive bias necessary for learning the event latent space.

The term soft-DTW(S,S′) ensures reconstruction of demonstration frames from the textual events, while
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Figure 6.2: Distillation. We freeze the weights of the Backbone network and learn MDP homomorphisms from

the MDP of the robotic kitchen domain to the abstract MDP of human demonstrations (g), and vice-versa (f ), in a

self-supervised manner. The latent space simultaneously contains event representations from human cooking videos

and skills from the robotic domain.

soft-DTW(W,W′)) ensures the generation of textual description from visual events. soft-DTW(Zs,Zw)

aligns the textual and visual event spaces.

6.2.2 Skill Learning using Cyclical Homomorphisms

After pre-training on cooking videos of human demonstrations using Eq. 6.8, the weights of the encoders

(q(zv|v) and q(zw|w)) and decoders (p(w′|zv) and p(v′|zw)) are frozen. Subsequently, offline demonstra-

tion (i.e., sequences of states and actions) in the robotic domain is used. This data consists of demonstrations

by an expert robot performing tasks in the environment. In our case, the robot demonstration data consists

of how to open a microwave oven, open cabinets, turn on the light, etc. Adapter functions f and g are then

learnt which map demonstration trajectories of states and actions from a trained robot performing these

tasks in the environment onto the same space of video and word embeddings as used for human cooking.

6.2.2.1 Skills and Environment Dynamics

As in [85], we define a skill as a sequence actions that may be executed in and of itself, without sensory

feedback. Additionally, when a skill is applied to an environment, it results in a sequence of transitions that

uniquely identifies the skill. For example, a skill which lifts an object in an environment is identified by both
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Figure 6.3: Cyclical Homomorphisms. During pre-training, Video2Skill learns an embedding space which encodes

events occurring in an abstract MDP in which the human demonstrator behaves. This is done using video frames and

textual commentary which serve as proxies for states and actions. Subsequently, a pair of homomorphisms map the

robotic MDP into and out of the abstract MDP. These are learnt using a reconstruction loss.

the sequence of actions applied by the agent and the resultant sequence of transitions in the environment.

Thus, a latent vector z contextualizes both the policy (πθ) and the subsequent model (pϕ):

at ∼ πθ(st, zt) and st+1 ∼ pϕ(st, zt) (6.4)

Thus, the models over trajectories of states and actions in demonstration data factorize as:

p(s0)

T∏
t=1

p(st+1|zt, st)p(zt|z<t) and p(a0)

T−1∏
t=1

p(at+1|zt,a≤t)p(zt|z<t) (6.5)

6.2.2.2 Cyclical Homomorphisms

Upon inspection, one can find that models in Eq. 6.2 and in Eq. 6.5 consist of the same structure, i.e.,

knowledge of the latent representation and of the history of a sequence determines the transition (with

the exception of the state models in Eq. 6.5 due to the Markov assumption, where rather than history, the

current state is sufficient). Consider the pair of MDPs - M in the robotic domain (S , A) with state space S ,

and action spaceA and second,M′
, the abstract MDP with state space S ′ = ω(V)× ξ(W) and action space

A′ = Ω(V) × Ξ(W) where V and W represent the spaces of video frames and words and Ω(.),ω(.),ξ(.)

and Ξ(.) are unknown mappings from text and videos to state and action representations (in what follows,

knowing their exact form is not necessary). We exploit the shared structure between these MDPs to learn a
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pair of MDP homomorphisms - from the robotic MDP to the abstract MDP and vice-versa. As defined in

[134]:

Definition 5 (MDPHomomorphisms). ADeterministicMDP homomorphism from anMDPM = (S,A, T ,R)

to an MDP M′ = (S ′,A′, T ′,R′) is a tuple of functions, F = (fs, fa) with:

• fs : S → S ′ the state embedding function, and

• fa : A → A′ the action embedding function

such that the following identities hold:

∀st, st+1 ∈ S,at ∈ A if st+1 = T (st,at) then: fs(st+1) = T ′(fs(st), fa(at)) (6.6)

∀st ∈ S,at ∈ A,R(st,at) = R′(fs(st), fa(at)) (6.7)

Thus we learn a pair of MDP homomorphisms - F : M → M′
and G : M′ → M such that

d(G(F(M)),M) is minimized, where d(·, ·) : M×M → R+ is a suitable distance metric in the space of

MDPs.

6.2.2.3 Cyclical Homomorphic Objective

We learn each of the homomorphisms by learning the state and action embedding functions separately.

This is done by freezing the weights of the encoders (q(zv|v) and q(zw|w)) and decoders (p(w′|zv) and

p(v′|zw)) in the backbone network pre-trained on the human demonstrations. Subsequently, fs, fa, gs, and

ga are learnt such that fs and fa (i.e., the forward homomorphism) map sequences of states and actions from

demonstrations in the kitchen environment into the spaces of video frames and words respectively. Next the

pre-trained encoders, i.e., (q(zv|v) and q(zw|w)), generate the latent skill vectors for these trajectories. The

skill vectors are fed into the pre-trained decoders (p(w′|zv) and p(v′|zw)) to regenerate the sequences in the

82



space of words and video frames. Finally, these sequences are fed back into the inverse MDP homomorphism

(gs, and ga) to generate the original input sequence (Fig. 6.3).

Ldistil = soft-DTW(S,S′) + soft-DTW(A,A′) (6.8)

6.3 Experiments

Our architecture is versatile, in that it results in the simultaneous learning of a latent conditioned dynamics

model of the environment (green arrows in Fig. 6.2) and a latent conditioned policy or skill network (yellow

arrows in Fig. 6.2). Through experiments, we present three main thrusts — representation learning,

dynamics learning and skill learning. We study the utility of our approach in learning adaptable event

representations. We show that our work results in unsupervised analogy learning of motion sequences.

Subsequently, we study the ability of our latent conditioned model to utilize prior knowledge to quickly learn

a long-horizon model of its environment, outperforming several state-of-the-art sophisticated baselines.

Finally, we study the ability of Video2Skill to generate skills simply from human demonstration. We show

that our agent performs complex motion behaviors in the robot kitchen environment akin to stirring,

grasping, pouring, etc., which were demonstrated by humans in the cooking videos.

We train our backbone network on the YouCook2 ([185]) dataset which comprises instructional videos

for 89 unique recipes (∼22 videos per recipe) containing labels that separate the long horizon trajectories of

demonstrations into events - with explicit time stamps for the beginning and end of each event along with

the associated commentary. Subsequently, we train the cyclical homomorphic objective on demonstrations

from d4RL dataset ([55]) of the Franka Kitchen environment ([64]). The goal of the FrankaKitchen

environment is to interact with the various objects to reach a desired state configuration. The objects

the agent can interact with include the position of a kettle, flipping a light switch, opening and closing a

microwave and cabinet doors, or sliding another cabinet door. The desired goal configuration for all 3 tasks

83



is to complete 4 subtasks: open the microwave, move the kettle, flip the light switch, and slide open the

cabinet door.

6.3.1 Long Horizon Dynamics Learning

Dynamics learning, especially in an offline manner is a challenging endeavour. Dynamics learning using

expressive models such as neural networks has proven to be challenging due to uncertainty stemming from

insufficient data (epistemic uncertainty) and from the inherent stochasticity of an environment (aleatoric

uncertainty). Further, long horizon dynamics modelling has long remained the bane of model-based

reinforcement learning systems. Without an adequate model to rely upon while planning in the long

horizon, model-based RL systems, although interpretable and simple have fallen behind recent advances

in model-free RL. The root cause of many failures of long-horizon planning is error aggregation, i.e.,

sub-optimal predictions at each time step during inference results in a trajectory of states that moves

increasingly further from the ground truth transitions in an environment with time.

Here, instead of inferring a long-horizon trajectory of states in an auto-regressive manner by passing

actions into the model one-by-one, we propose to feed a whole sequence of actions into Video2Skill.

Video2Skill decodes a sequence of skill representations from such a sequence of actions and subsequently

generates the expected trajectory of resultant states conditioned on a starting state.

We compare our approach to four popular model/dynamics learning approaches currently used as

state-of-the-art. As defined in [37]:

Probabilistic Neural Network (PNN): A probabilistic NN is a network whose output neurons simply

parameterize a probability distribution function, capturing aleatoric uncertainty. We use the negative log

prediction probability as our loss function, i.e., lossPNN =
∑N

i=1 log(fθ(st + 1|st,at)) and choose the

output distribution to be Gaussian with a diagonal covariance matrix.

Determinstic Neural Network (DNN): A deterministic NN is a special case of a probabilistic network
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that outputs delta distributions centered around point predictions denoted by fθ(st,at) = fθ(st+1|st,at) =

Pr(st+1|st,at) = δ(st+1 − fθ(st,at)). It is trained using lossDNN =
∑N

i=1 ||st+1 − fθ(st,at))||2. MSE

can be interpreted as lossPNN with a Gaussian model of fixed unit variance, but cannot be used in practice

for propagation.

Ensembles - PE and DE: As in [37], we consider ensembles of B-many bootstrap models, using θB to

refer to the parameters of our bth model fθb . Ensembles can consist of probabilistic NNs or deterministic

NN both with effective probabilty distributions as fθ =
1
b

∑b
1 fθb .

Video2Skill is pre-trained on the YouCook2 [186] demonstrations. Subsequently, we provide each of the

baselines and Video2Skill with a dataset of demonstrations in the robot kitchen environment. Each of the

baselines and Video2Skill are trained for 1, 5, and 10 epochs and subsequently evaluated on unseen data for

a 2-step, 5-step and 180-step (full sequence) next-state prediction. We repeat training over 10 random seeds

and report standard error across the seeds.

We find that our model is robust to long-horizon error aggregation. In Table 6.1, we compare the ability

of our model to quickly adapt to dynamics of the kitchen environment when the backbone network is

pre-trained on cooking videos. We find that our model outperforms all current state-of-the-art approaches

in learning dynamics of the environment faster and maintaining performance over longer horizons.

6.3.2 Unsupervised Analogy Learning

Video2Skill is trained on two separate datasets - YouCook2 and d4RL-FrankaKitchen. During pre-

training, the agent learns environment-agnostic event representations encoding the associated sequences

of video frames and textual commentary from YouCook2. During homomorphism learning, it learns to

map sequences of states and actions in the robotic environment into the same latent space using the d4RL-

FrankaKitchen dataset. Thus, we obtain a shared latent space, which contains event representations from

cooking videos and kitchen environment skill representations. In Fig. 6.5, we plot a reduced dimensional
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Table 6.1: Long Horizon Dynamics Learning. We study the ability of Video2Skill to learn long horizon models

of an environment in an offline manner. We pre-train the Backbone networks and on the cyclical homomorphic

objective for 1, 5 and 10 epochs. We find that Video2Skill performs up to 10 times better over long-horizon sequences

(lower RMSE is better).

Method 2-Step 5-Step Full Sequence

PNN: [73]
1 Epoch 1.0065± 0.2719 0.6447± 0.0886 0.9131± 0.0126
5 Epoch 0.7297± 0.1462 0.9212± 0.25 0.8612± 0.0132
10 Epoch 0.7658± 0.2858 1.2529± 0.3738 0.6937± 0.0131

DNN: [112]
1 Epoch 0.4184± 0.0009 0.4189± 0.0009 0.4502± 0.0013
5 Epoch 0.3897± 0.0027 0.407± 0.0016 0.4334± 0.0017
10 Epoch 0.1327± 0.0076 0.2496± 0.0113 0.3357± 0.0081

DE: [94]
1 Epoch 0.4201± 0.0011 0.4205± 0.001 0.451± 0.0011
5 Epoch 0.3912± 0.0018 0.4078± 0.0013 0.4343± 0.0014
10 Epoch 0.1384± 0.0036 0.257± 0.0054 0.341± 0.0043

PE: [37]
1 Epoch 0.5339± 0.0376 0.5061± 0.02 0.57± 0.0041
5 Epoch 0.5124± 0.0524 0.5633± 0.06 0.5434± 0.005
10 Epoch 0.3585± 0.0757 0.3925± 0.0581 0.4327± 0.0026

Video2Skill (ours)
1 Epoch 0.2872± 0.0069 0.2946± 0.006 0.3077± 0.0012
5 Epoch 0.0818± 0.003 0.0675± 0.0023 0.0655± 0.0001
10 Epoch 0.0552± 0.003 0.052± 0.0037 0.0511± 0.0001

t-SNE plot ([171]). We then explore the overlapping latent vectors in the plot and decode them to visualize

the analogies discovered by the architecture. We find that Video2Skill models motion programs successfully

across domains without any supervision. The model learns to pick up on analogies between a spreading

motion in the cooking videos to a horizontal sliding motion in the kitchen demonstration sequences. In

other instances, it discovers analogies between circular hinge motions in the kitchen environment and

circular stirring motions in the cooking videos. We emphasize, no supervision was provided to map the

individual domains to one another. The cyclical pair of MDP homomorphisms resulted in an unsupervised

analogy discovery.
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Figure 6.4: Unsupervised Analogy Learning. Using the cyclical homomorphisms, we embed events from the

human cooking demonstration videos and skills from the robotic kitchen environment into the same latent space. We

explore the representation learning capacity by finding overlapping regions of the latent space and exploring their

semantic meaning. Video2Skill produces semantically meaningful analogies.

6.3.3 Zero-shot Skill Generation

As both video demonstration event representations and skill vectors are embedded in a shared latent

space, we explore the ability of our architecture to generate useful and semantically meaningful skills in a

zero-shot manner. To do this, we sample event representation vectors and pass them as input to the textual

decoders p(w′|zv) and subsequently, to the action embedding of the Inverse Homomorphism G′ =, ga.

The resultant actions are then applied to the environment to visualize how knowledge acquired from the

cooking videos can be used to learn long horizon action sequences that are semantically meaningful.

We find that the model is able to generate complex skills that were never seen in the robotic demonstra-

tion data, but were demonstrated by humans in the cooking video data. For example, our model produces a

robotic stirring motion both clockwise and counter-clockwise. Other skills include motion sequences that

could be used for grasping, pouring, etc. if the robot was given extra artifacts like cups, water, etc. This

link shows discovered skills from human demonstrations.
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Figure 6.5: Qualitative Evaluation of Generated Skills. Video2Skill generates several significant semantically

meaningful skills merely from human demonstrations. These motions are learnt in a reward free manner and can be

used for complex tasks. Click here to view gifs of discovered skills.

Figure 6.6: Quantitative Evaluation of Generated Skills. We study the time-warped sequence distance (lower
is better) between demonstrations from an expert agent in the kitchen environment and the skills generated by

Video2Skill. We find that Video2Skill generates skills closer to expert trajectories than [50], a state-of-the-art

unsupervised skill learning approach.

6.3.4 Quantitative Skill Assesment

In Fig. 6.6, we study the utility of the skills generated by Video2Skill in being able to effectively manipulate

objects and successfully complete tasks in the environment. To this end, we decode each of the generated

skills from our architecture in terms of control signals and find their smallest sequence discrepancy in

the demonstration data. This discrepancy calculation is performed using the Dynamic Time-Warping loss

proposed by [39]. This allows us to calculate the sequence matches between 2 sequences of varying lengths.

We compare the quality of our skills to those generated by DIAYN ([50]). We find that our skills are up to
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three times closer to demonstration trajectories than those generated by DIAYN. We repeat experiments

over 6 random seeds.

Video2Skill demonstrates how to map human demonstrations to learnable robot skills. But can we

use human videos to gain a commonsense understanding of the world? The upcoming chapter, RoboGPT

studies this.

6.4 Conclusion

We propose a reward-free approach to skill learning, which utilizes prior knowledge to aid decision-

making in a complex environment. We show that our architecture results in powerful long-horizon

models and semantically meaningful skills and uses human demonstration data to aid both. A drawback of

our architecture is the size and training time (several GPU-months of training means significant energy

expenditure); work towards leaner models will be beneficial. Additionally, there is still a gap between

demonstration and generated skills (Fig. 6.6). Work towards bridging this gap is necessary.
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Chapter 7

RoboGPT: Embedding Commonsense into Embodied Foundation Models

7.1 Introduction

Foundation Models [18, 182] have displayed impressive emergent capabilities [23, 97] bringing us ever

closer to the promised land of generalist instruction-following agents. These trillion-parameter models

have shown impressive sequential reasoning capabilities [174, 175, 183], code generation [180, 156], and

embodied decision-making abilities [78, 21]. However, these models have remained in silico, interacting

with the world programmatically through APIs, never physically acting in it. To bridge this gap, this proposal

focuses on (1) building new foundation models and (2) repurposing existing foundation models for

generalist-embodied decision-making in the physical world.

The fundamental resource that has delivered the early signs of generalist intelligence displayed by

digital foundation models is the internet scale of data on which they are trained. Data, ironically, is also the

bane of existence of embodied foundation models. As it turns out, acquiring some kinds of data is much

harder than others. Gathering text data for instance is relatively easy — online interactions, textbooks, and

the general human need to document have resulted in a large corpus of textual data. Gathering robot data

is a different story — RT-1 [19], a pioneering foundation model for robotics utilized ∼ 105 demonstrations

to train, collected painstakingly over nearly 2 years by a team of robot operators. In comparison, LLAMA-2

[169], a textual foundation model utilized in the order of 1012 number of tokens in the training data.
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Collecting the same amount of robot data at the same rate as RT-1 would take longer than humans have

been on Earth! Thus, there exists an unmet need to build foundation models for embodied agents that rely

on less robot-specific data and can leverage human data (i.e., text/videos/images) to learn skills.

With this data disparity in mind, in this document, I will first discuss two recent advances in foundation

models for embodied decision-making which I helped develop — RT-1 [19], which was a Best Demo Paper

Finalist at RSS 2023 and RoboCLIP [160], (accepted at NeurIPS 2023) which utilizes existing foundation

vision-and-language models (VLMs) and distills their knowledge into robotic policies by using them to

define rewards. Finally, I will propose RoboGPT, a roadmap towards universally-capable embodied generalist

agents that can learn from unstructured human videos.

7.2 Related Works

7.2.1 RT-1: Large Scale Behavior Cloning for Embodied AI

RT-1 is a classical behavior cloning method that utilizes a large Transformer decoder [172] to parameterize

the policy π. In RT-1, we collect a large corpus of language-annotated expert observation-action demon-

strations and train a transformer using supervised learning on this data to learn an optimal policy. Thus, a

long horizon control problem is treated as a supervised learning problem as done in previous imitation

learning works [130].

Model: Generally speaking, a Transformer is a sequence model mapping an input sequence {ξ}Hh=0

using combinations of self-attention layers and fully-connected neural networks to an output sequence

{y}Kk=0. We parameterize π by first mapping language instruction i and observations {xj}tj=0 to a sequence

{ξ}Hh=0 and the corresponding action outputs at to a sequence {yk}Kk=0. We then learn the mapping

{ξ}Hh=0 → {yk}Kk=0 using vanilla supervised learning. The observations are first encoded using a FiLM

EfficientNet-B3 [164] pretrained on Imagenet [43] and the language instruction is encoded using a Universal
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Sentence Encoder [27].

Figure 7.1: Using Out-of-Domain Videos for Reward Generation. RT-1 takes images and natural language

instructions and outputs discretized base and arm actions. Despite its size (35M parameters), it does this at 3 Hz, due

to its efficient yet high-capacity architecture: a FiLM [128] conditioned EfficientNet [164], a TokenLearner [139], and

a Transformer [172].

Dataset: Our primary dataset consists of ∼ 130k robot demonstrations, collected with a fleet of 13 robots

over the course of 17 months. The current set of skills includes picking, placing, opening and closing

drawers, getting items in and out drawers, placing elongated items up-right, knocking them over, pulling

napkins and opening jars. The skills were chosen to demonstrate multiple behaviors with many objects to

test aspects of RT-1 such as generalization to new instructions and ability to perform many tasks.

Results: Our results show that RT-1 can perform over 700 training instructions at 97% success rate, and

can generalize to new tasks, distractors, and backgrounds 25%, 36% and 18% better than the next best

baseline, respectively. Limitations: The biggest limitation of RT-1 is the data collection loop. To collect a

mere∼ 130k trajectories, teams of robot operators worked for 17 months on a fleet of 13 robots. Thus, RT-1

needs (1) experts to (2) collect many thousand demonstrations, i.e., it requires significant expert supervision

and a large dataset of demonstrations. Instead what if robots could learn from a single demonstration like

humans can? What if they could also learn from demonstrations outside their own domain, the way we do

by watching recipe videos shot in someone else’s kitchen? What if they could learn to do a task by simply

reading a DIY manual?

RoboCLIP can.
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7.2.2 RoboCLIP: Imitation from One Demonstration

Given RT-1’s limitations, there exists an unmet need for foundation models that 1) require very few

demonstrations and 2) allow for a natural interface for providing these demonstrations. For instance,

algorithms that can effectively learn from language instructions or human demonstrations. Our key insight

is that by leveraging Video-and-Language Models (VLMs)—which are already pretrained on large amount

of video demonstration and language pairs—we might not need to rely on large-scale and in-domain

datasets. Instead, by harnessing the power of VLM embeddings, we can treat the alignment between a single

instruction’s embedding (provided as a language command or a video demonstration) and the embedding

of the video of the current robot policy’s rollout as a proxy reward that can potentially guide the robot

towards the desired instruction.

Environment

S3D-v

S3D
Policy

Task Descriptor
(video or text)

Similarity

Every
timestep

End of the 
episode

“Robot opening drawer”

Figure 7.2: RoboCLIP Overview. A Pretrained Video-and-Language Model is used to generate rewards via the

similarity score between the encoding of an episode of interaction of an agent in its environment, zv with the encoding
of a task specifier zd such as a textual description of the task or a video demonstrating a successful trajectory. The

similarity score between the latent vectors is provided as reward to the agent.

Method: RoboCLIP utilizes pretrained video-and-language models to generate rewards for online RL

agents. This is done by providing a sparse reward to the agent at the end of the trajectory which describes

the similarity of the agent’s behavior to that of the demonstration. We utilize video-and-language models

as they provide the flexibility of defining the task in terms of natural language descriptions or video

demonstrations sourced either from the target robotic domain or other more naturalistic domains like

human actors demonstrating the target task in their own environment. Thus, a demonstration (textual or
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video) and the video of an episode of robotic interaction are embedded into the semantically meaningful

latent space of S3D [177], a video-and-language model pretrained on diverse videos of human actors

performing everyday tasks taken from the HowTo100M dataset [105]. The two vectors are subsequently

multiplied using a scalar product generating a similarity score between the 2 vectors. This similarity score

(without scaling) is returned to the agent as a reward for the episode.

Thus, at the end of the episode, the similarity score between the encoded task descriptor zd and the

encoded video of the episode zv is used as reward rRoboCLIP(T ). There the RoboCLIP reward is:

rRoboCLIP(t) =


0, t ̸= T

zd · zv t = T

where zd · zv corresponds to the scalar product between zd, the encoding of the task descriptor and zv , the

encoding of the video of an episode of interaction of the robot in its environment.

Results: We find that RoboCLIP utilizes a single demonstration to learn policies and is able to outperform

strong imitation learning baselines like FISH [67], GAIL [74] and AIRL [56] which utilize the full state

action demonstration to learn a policy/reward. RoboCLIP only uses the video demonstration or textual

description of the task to learn a policy providing a natural interface with the agent and allowing for domain

non-experts to teach the agent. Additionally, this low data requirement means that RoboCLIP does not

require fleets of robots and teams of operators for data collection.

Limitations: The biggest limitation of RoboCLIP is the requirement for online interaction. The robot

must interact in the environment and is required to explore to learn a policy using the RoboCLIP reward.

This is difficult to do in safety-critical situations, e.g., in robotic surgery, where exploration can be disastrous.

What if robots could learn from a single demonstration like RoboCLIP, but do so in a completely offline

manner?
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RoboGPT just might.

7.3 RoboGPT: Future Prediction forCommonsenseUnderstandingwithin

Embodied Foundation Models

To recap, we would like our embodied foundation models to do the following: (1) learn from human data

and utilize copious amounts of unstructured text and video data, (2) use as little robot data as possible

allowing the foundation model to scale to thousands of tasks and (3) learn in an offline manner allowing

the foundation model to be deployed in domains where online exploration is not possible. Inspired by the

GPT-style [120] of pretraining which has demonstrated impressive results on language tasks, we intend to

build its robotic counterpart, RoboGPT. RoboGPT will consist of a next-token self-supervised prediction

objective that facilitates the learning of a world model. This will be followed by finetuning the model to

incorporate human preferences [35].

Figure 7.3: Overview of RoboGPT. (Left) We will first learn a language-conditioned model of the world Φ using a

large corpus of language-annotated human videos. The objective for this pretraining will be a temporal next token

prediction error, i.e., predicting what happensH steps into the future given the present. This dynamics model will

operate on the embedding space of a pretrained vision model h. This model will be pretrained on a large amount of

unstructured human video data. (Right) For a single demonstration of a given task the robot will learn an inverse

dynamics model that maps 2 consecutive observation embeddings to the action that caused the transition.

Pretraining: We will first learn a language-conditioned model of the world Φ using a large corpus

of language-annotated human videos. The objective for this pretraining will be a temporal next-token
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prediction error, i.e., conditioned on a sequence of embeddings of K past observations {h(xt−k)}0k=K and

a textual description of the video i, the model will learn to predict embeddings for the next H steps into

the future, i.e., {h(xt+j)}Hj=1. We will utilize a pretrained image-encoder h that maps high-dimensional

observations xt into latent vectors. Specifically we will learn,

{h(xt+j)}Hj=1 = Φ({h(xt−k)}0k=K , i) (7.1)

This will endow the model with knowledge about the physics of the world and result in the acquisition of

general-purpose commonsense/prior about what task completion looks like.

Finetuning: Given a small amount of demonstration data for a target task, we will learn an inverse

dynamics model Ω in the embedding space which maps {h(xt), h(xt+1)} → at where at is the action

taken at timestep t. Cheaply learning this model will be possible due to the fact that h(·) maps a high-

dimensional observation xt into a low-dimensional space. One could conceive of not needing any task-

specific demonstrations and instead learning this inverse-dynamics model using data collected by a random

policy.

Inference: The combined models will be used during inference whereby a sequence of previous and

current observations {h(xt−1), h(xt)} along with the instruction i describing the task will generate the

embedding for the next observation h(xt+1) through Φ. The learned inverse dynamics model Ω will take

as input the embeddings for the current observation and the predicted next observation {h(xt), h(xt+1)}

and produce the required action at.
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7.4 Experiments

7.4.1 Training the Backbone

We train the backbone using a reconstruction loss in pixel space. We experiment with different trajectory

lengths for training - namely predicting either the next token in video space, i.e., the next image, or

predicting the next 18 images in a video conditioned on 2 input frames. The start point of the video is

sampled randomly between the first frame of the video and the len(video)− len(trajectory). The number

20 for the trajectory length was chosen using the mean of the video lengths in the Something-something-v2

dataset [60].
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Figure 7.4: Backbone Training Curves. (Top) We train the backbone for ∼ 200 epochs on the Something-

Something-v2 [60] Dataset. We vary the sequence length on which the method is trained. We find that the training

loss remains higher for a sequence length of 20 which is expected as learning dynamics is a harder task. (Right) After
every epoch, we perform validation on the validation split of the dataset and utilize the best model as the backbone.
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The model is trained using the Something-something-v2 [60] dataset of humans interacting with

everyday household objects. The data has a high diversity of objects, camera views, and backgrounds,

allowing us to learn generalizable representations using the videos.

Baseline Our primary baseline is Voltron[84] which utilizes the same Something-something-v2 dataset

for pretraining. Voltron uses a dual language generation and image reconstruction objective. The image

reconstruction objective attempts to reconstruct masked pairs of images sampled randomly from videos in

Something-something-v2. The language generation objective attempts to use masked images to generate

the language description of the task the robot is attempting to perform. The representation is shown by the

authors to improve downstream embodied intelligence tasks like language-conditioned imitation learning,

single-task imitation learning in simulation, etc.

7.4.2 One Demonstration Behavior Cloning

We train a policy head on top of the representation generated by RoboGPT and Voltron. This consists of a

4-layer MLP with an internal representation size of 512. The representation generated is first fed into a

LayerNorm [7] and then subsequently into the MLP. The output of the network is the 4-DoF action space

corresponding to the robot’s end effector position and gripper open/close command in the Metaworld

environment [181]. We experiment with how much demonstration data is needed to learn an effective

policy using each of the representations. We do not freeze the representation generated by each of the

methods, but instead fine-tune the backbone and the policy head jointly on the demonstration data.

While statistically significant, we that the performance improvement is not very large with an approxi-

mate 2% task success increase across the metaworld suite. This is potentially due to the small amount of

data utilized during the training of the policy (we are using only one demonstration to learn the policy).

Subsequently, in the next subsection, we study how adding more demonstrations affects performance.
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Figure 7.5: One Demonstration Imitation Learning on 31 Metaworld Environments. We train the backbone

along with the policy head on one image-based demonstration trajectory for ∼ 3000 epochs. Subsequently, we run
evaluations on 5 separate random seeds. We repeat this process over 3 random seeds. We report results aggregated

on 31 Metaworld environments. RoboGPT outperforms the strongest baseline - Voltron[84] by ∼ 2% task success.

7.4.3 Three Demonstration Behavior Cloning

Adding more demonstrations significantly improves performance as can be seen in Figure 7.6. In this

setting, we also study how performance varies by increasing the output sequence length utilized during

training. We find that the backbone that yields the highest performance is the version of RoboGPT with 2

input frames and 18 output frames. This demonstrates that dynamics prediction indeed is a useful inductive

bias for downstream policy learning. This is likely because a longer output sequence forces the backbone

to model more dynamics and action information making the representation encode more task-relevant

information than simple language-based image reconstruction.

7.5 Conclusion

RoboGPT allows us to leverage a large amount of human data available to gain a common sense under-

standing of the world achieving (1). The learned policy maps the robot embodiment into the world model

allowing for generalization to unseen tasks within a robotic embodiment. This is especially useful in settings

99



Figure 7.6: Three Demonstration Imitation Learning on 6 Metaworld Environments. We train the backbone

along with the policy head on three image-based demonstration trajectories for∼ 3000 epochs. Subsequently, we run
evaluations on 5 separate random seeds. We repeat this process over 3 random seeds. We report results aggregated

on 31 Metaworld environments. RoboGPT outperforms the strongest baseline - Voltron[84] by ∼ 7% task success.

The gap between RoboGPT and Voltron is increased by the longer sequence length.

where collecting robot trajectories is difficult but human data is easier. For instance, whilst deploying

a home robot, collecting robot trajectories in every home will be difficult, however, YouTube data with

thousands of hours of human demonstrations can be utilized for policy learning using RoboGPT.

Notes on Utility and Risks: In this modern age of immersive experience, embodied agents will become

ubiquitous. Humans will interact with virtual embodied agents in mixed/augmented reality scenarios and

generalist agents within these worlds will become a necessity. One can imagine a scenario in which these

embodied agents can learn from passive internet-scale datasets of human videos and gain some generalist

capabilities using RoboGPT. Subsequently, they can learn new tasks quickly through natural language or a

single demonstration using RoboCLIP through human interactions. Utilizing this large amount of human

data/models trained on human data may result in biases percolating through models — a risk that we must

be mindful of.

100



Chapter 8

Conclusions

Through this thesis, I studied the ability of sequential decision-making agents to first explore their envi-

ronment in a structured and efficient way inspired by causality. Following this, I focused on how such

exploration strategies can help the generalization of RL agents to test-time environments with unseen

variations.

The second half of the thesis focuses on how to use human data to improve robot learning. SHERLock,

Video2Skill, and RoboCLIP study how to use the wealth of human data available on the internet, in the

form of video-language pairs to improve robot learning allowing robots to acquire skills from human

demonstrations and/or language task descriptions. RT-1 and Q-Transformer study how to use a large

dataset of teleoperated robot behaviors to train generalist robot policies.

The future of robot learning presents significant opportunities to help overcome labor shortages and

improve the quality of life of aging populations. However, significant challenges remain — how to do we

collect enough robot data to scalably to robot policies that can generalize in noisy unstructured, and unseen

environments? How can we build commonsense mechanisms into robot policies? Finally, even if we can

build generalist policies using large amounts of demonstration data, how can we make them efficient at

inference and reduce the time required to sample actions?
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