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Abstract

General-purpose robots deployed in the real world must respond to dynamic environments and contin-

uously learn new tasks. However, existing methods struggle to support such adaptation at scale—that is,

without substantial human supervision. My thesis presents an approach to scalable robot adaptation by

leveraging the general knowledge encoded in Large Pre-trained Models (LPTMs). I show how integrating

LPTMs with robot learning frameworks can: (1) enhance robot pre-training to better prepare for unfamil-

iar tasks and settings, (2) adapt to new tasks and environments with human feedback, and (3) ultimately

enable autonomous adaptation with minimal human input. Together, these contributions outline a path

toward generalizable algorithms that empower robots to learn novel tasks in real-world, unstructured en-

vironments.
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Chapter 1

Introduction

When I began my PhD in August 2020, I wanted to tackle one central problem: “How can we train robots

that continually learn new skills and adapt to new environments after deployment?” At the time, robot

learning approaches fell into two buckets: (1) imitation learning, which relies on human-collected expert

demonstrations for every new task, and (2) reinforcement learning from scratch, which is too slow and

sample-ine�cient. Both approaches were impractical to scale to robots that can continually adapt after

deployment.

Meanwhile, we humans are remarkably capable learners who can continually learn new skills through-

out our lifetimes and �uidly transfer expertise across domains. For example, a world-class cardiothoracic

surgeonwith the ability to carefully perform precise, �ne-grained cuts around patients’ hearts can go home

after work and apply her �ne-grained hand control to learning how to play the piano.

Initially, I wasn’t sure how to bridge the gap between how humans learn and how robots could. After

all, the problem setting that I cared about, robots adapting to new tasks without extensive retraining, has

been studied for decades [25, 124]—what more could I contribute? My guiding principle at the time was

that humans have strong priors, both evolutionarily and gained through experience, that help with the

ability to learn new skills [102, 12]. But where do we get these priors for robotics?
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Adapt Autonomously

Minimal Supervision

Guided Adaptation

Human Guidance

Pre-Training

Prepare for Adaptation

Figure 1.1: The core components of scaling robot adaptation with large model guidance. I introduce
how to use large pre-trained models (LPTMs) to �rst guide robot pre-training so they can see as much
data as possible before adapting to new tasks or settings. Then, I demonstrate how to use LPTMs to enable
guided adaptation by using them to interpret human guidance during adaptation. Finally, I present how
to use LPTMs to help robots adapt autonomously, with minimal human supervision, to new tasks and
settings.

I did not truly know how to answer this question, and during the early years of my PhD, I worked

on robotics research problems related to but not directly tackling this challenge [406, 354, 403]. In early

2022, I �nally came back to thinking about priors for enabling robot learning. By 2022, large pre-trained

models (LPTMs) such as GPT-3 [42], trained on terabytes of human-generated internet text, were starting

to become mainstream. They were demonstrating promise in serving as knowledge priors, demonstrating

potential to be useful for a variety of downstream tasks in the �elds of natural language processing and

computer vision [290, 42, 364, 144]. This insight became the turning point of my research direction. I

began to explore how LPTMs could serve as prior knowledge sources for robots—enabling adaptation by

helping robots to pre-train on more data, interpreting human guidance for robots, or even guiding robots

in what new tasks to learn once deployed.

This thesis explores how to leverage large pre-trained models (LTPMs) to enable scalable robot adap-

tation. This thesis focuses on using LPTMs to help both robot pre-training to encourage learning strong

robotics priors before adaptation, and adapting to new tasks after deployment. I segment this thesis into

three parts:

1. Pre-training robots to learn strong priors that help with learning new tasks or in scenes;
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2. After deployment, adapting with human guidance to new scenes and tasks; and �nally

3. Adapting withminimal human supervision as a step towards truly autonomous robot learning.

See Figure 1.1 for an overview of my thesis.

1.1 Pre-training Robot Policies for E�cient Adaptation

In Part I, I introduce three approaches aimed at pre-training robots before deployment to prepare them for

adaptation after deployment. This chapter is driven by one key idea: strong pre-training algorithms should

train robots tomaximally use o�line data to learn as many tasks across as many scenes as possible, so

that they can bootstrap this knowledge for adapting to new tasks and scenes once deployed. Furthermore,

to enable scalability, pre-training should require as little manual human annotation as possible. To this

end, I include three chapters on pre-training. From here on, I will be using “we” to describe each individual

chapter as they could not be possible with a great set of collaborators.

In Chapter 3, we introduce SPRINT, a method to automatically expand an existing dataset of language-

annotated trajectories by over 2.5X its original size, greatly reducing human annotation e�ort through

two novel procedures that combine LPTMs and o�ine reinforcement learning (RL): Aggregating language

annotations and employing large language models (LLMs) for instruction relabeling (e.g., put mug in co�ee

machine + press brew→ make co�ee), and Chaining skills from di�erent trajectories through a principled

o�ine RL objective, helping robots prepare for learning new tasks by teaching them to stitch behaviors

together in amanner not represented explicitly in the data. Through these procedures, we achieved up to 8x

improvement in zero-shot performance and more e�cient online RL adaptation to novel tasks, across both

simulated [328] and real-world benchmarks [76]. SPRINT was published in Zhang et al. [405]. However,

while SPRINT addressed how to expand an existing dataset of language annotated trajectories, what if we

there are no annotations to begin with?
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We answer this question in Chapter 4, where we present EXTRACT, a pre-training method that uses

large pre-trained vision language models (VLMs) to autonomously extract a discrete set of parameterized,

task-agnostic skills which can act like functional robot API calls (e.g., pickup(x=0.45, y=0.5) ) from o�ine

data. Naïvely applying VLMs directly did not work well. Instead, we used VLM image encoders to produce

embedding di�erences that encode high-level behaviors across parts of each trajectory video. Then, we

clustered these di�erences into a discrete set of behaviorally aligned skills that a robot policy learn a small

set of continuous arguments for to quickly adapt to a new task. Our experiments demonstrate up to a

10x sample e�ciency improvement over prior skill-based RL methods [282] in learning new tasks across

multiple benchmarks [104, 201], including a real-world Furniture Assembly task [135] that improved 32%

with just 100 trajectories of real-world online RL �ne-tuning. This work was published as Zhang et al.

[402]. Both SPRINT and EXTRACT focused on learning as much as possible from robotics data. But, it

would be even better if we could pre-train with arbitrary internet data, of which there is far more than

robotics-speci�c data, to further help with generalization to new tasks.

Chapter 5 enables pre-training with arbitrary internet data by introducing HAMSTER, a large, hierar-

chical vision-language-action model where the top-level of the hierarchy is pre-trained on internet data to

learn robotics-related tasks without requiring as much labeled robotics data. In HAMSTER, we propose to

�ne-tune a VLM to use 2-dimensional paths, easy to obtain at scale from simulated robotics data and ex-

isting open-source robotics datasets, to predict high-level robotics actions in the form of these paths. This

VLM can then be used zero-shot for providing high-level path guidance to a robot policy that requires less

�ne-tuning data to adapt than prior vision-language-action models [165]. This work was published as Li

et al. [192].

These �rst 3 chapters discuss how to use LPTMs to help scalably pre-train robot policies. In the next

section, we describe one easy way to adapt these policies to new scenes and tasks: via some form of human

guidance.
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1.2 Adapting to New Scenes and Tasks with Human Guidance

Directly providing human guidance is a natural way to help robots adapt, but doing so in a scalable manner

is important to be able to actually deploy robots. In Part II, I introduce two approaches that aim tominimize

the amount of human guidance required to adapt robots to new tasks and scenes.

In Chapter 6, we train robots to continually adapt to new tasks and scenes with a few human demon-

strations as guidance per task or scene. When this project was being worked on, there was little focus

on how to continually adapt large architectures derived from LPTMs on new demonstration data. We

found that �ne-tuning a model with so many parameters on small datasets performs poorly, yet assum-

ing access to ginormous per-task datasets is often unreasonable for consumer-facing robots. Therefore,

we introduce TAIL, a method that incorporates low-rank adapters common in other �elds [285, 55, 284]

with robotics policies derived from large pre-trained model backbones [290, 289]. We found that with

LoRA [142], we were able to adapt large robot policies with just ∼1% of the trainable parameters of the

original model while avoiding catastrophic forgetting. Nowadays, LoRA-�netuning is common across all

large pre-trained robotics models [165, 32]. This work is published as Liu et al. [210]. Still, assuming per-

task human demonstration datasets is still not very easy to scale. Is there another way to provide human

guidance more easily?

In Chapter 7 we introduce HAND, a simple and time-e�cient method for teaching robots new ma-

nipulation tasks through human hand demonstrations. Rather than provide human guidance in the form

of per-task demonstrations, a human provides guidance once before deployment by providing easy-to-

collect robot play data. Then, using a visual tracking pipeline powered by a vision LTPM, HAND extracts

the motion of the human hand from the hand demonstration and retrieves robot sub-trajectories in two

stages: �rst �ltering by visual similarity, then retrieving trajectories with similar behaviors to the hand.

Fine-tuning a policy on the retrieved data enables real-time learning of tasks in under three minutes, with-

out requiring calibrated cameras or detailed hand pose estimation. Experiments in simulation [237] and
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on real robots also show that HAND outperforms retrieval baselines [197, 238] by over 2× in task success

rates. This paper has been submitted to a conference and is under review.

These chapters demonstrated ways to adapt with some form of human guidance. While they are more

scalable than traditional IL methods, a question remains: Can we enable robots to autonomously adapt,

with minimal human supervision? This is the question I investigate in the last section.

1.3 Scalable Adaptation with Minimal Human Supervision

In Part III, I investigate ways to enable scalable robot adaptation while reducing the amount of supervision

required. This part represents a step towards truly human-like autonomous robots that acquire new skills

on their own. To this end, I discuss three chapters.

In Chapter 8, I investigate how to enable robots to learn complex tasks in new environments without

explicit human task guidance. Our method, BOSS, tackles this by proposing an LLM-guided “practice”

phase, where the robot re�nes pre-trained skills and composes them into new behaviors—without human

task guidance. After pre-training, the robot is deployed in an unseen environment and autonomously

selects skills to master and compose. For example, after mastering pick up empty co�ee mug, an LLMmight

suggest put mug in co�ee machine from its skill library. The robot then attempts this new skill sequence and

integrates it as a new skill, make co�ee. As the robot practices, its skill repertoire—tailored speci�cally to

that environment—grows richer. This method, published as Zhang et al. [407], enabled learning new skills

in new environments with just 17,000 environment steps in the real world. However, due to the di�culty

of hand-writing dense reward functions, we used sparse success detection to reward the robot’s practice.

Dense rewards are much more e�ective in teaching a policy to learn di�cult tasks [340]. In the last two

chapters, I investigate approaches for replacing human guidance in providing dense reward functions by

using LPTMs.
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Chapter 9 describes my �rst attempt at LPTM-guided dense rewards, RoboCLIP. In this work, we used

pre-trained VLMs to generate rewards for new tasks based solely on either a single demonstration video

or language instruction. RL agents trained with RoboCLIP rewards demonstrate 2-3 times higher zero-

shot performance than competing imitation learning methods on downstream robot manipulation tasks,

doing so using only one video demonstration or language instruction. RoboCLIP is published as Sontakke

et al. [334]. However, we noticed that RoboCLIP performed much better with a video demonstration; the

language-guided rewards seemed to be far less stable for policy training. Ideally, humans would be able

to only give language commands to a robot for it to be able to learn that task as a video demonstration

still requires signin�cant human e�ort to collect that demonstration through robot teleoperation. This

problem leads me to the �nal chapter of my thesis.

Chapter 10 proposes ReWiND, a framework for tackling the problem of sample-e�cient, real-world

learning of new tasks using only a language description. ReWiND starts from a small demonstration

dataset to learn: (1) a data-e�cient, language-conditioned reward function that labels the dataset with

rewards, and (2) a language-conditioned policy pre-trained with o�ine RL using these rewards. Given

an unseen task variation, ReWiND �ne-tunes the pre-trained policy using the learned reward function,

requiring minimal online interaction. We show that ReWiND’s reward model generalizes e�ectively to

unseen tasks, outperforming baselines by up to 2.4X in reward generalization and policy alignmentmetrics.

Finally, we demonstrate that ReWiND enables sample-e�cient adaptation to new tasks in both simulation

and on a real bimanual manipulation platform, taking a step towards scalable, real-world robot learning.

This work has been submitted to a conference and is under review.

In the �nal chapter, Chapter 11, I address remaining unsolved problems that prevent truly autonomous

robots from being deployed. These are problems I hope to tackle after my PhD as a continue my research

journey.
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Chapter 2

Background

The techniques to train robots in this thesis are all variants of reinforcement learning (RL), imitation learn-

ing (IL), and o�ine reinforcement learning approaches. I �rst de�ne these techniques and describe their

use cases and notation used in the rest of the thesis chapters.

2.1 Reinforcement Learning (RL)

RL describes a class of methods that are aimed at solving arbitrary sequential decision making tasks. In

RL, there is an agent, such as a robot, that interacts with an environment. This environment is typi-

cally de�ned as a discrete-time, �nite-horizon Markov decision process (MDP) described as a tupleM =

(S,A, T , T, R, µ, γ). S denote the state space where each s ∈ S denotes the full state of the world, such

as a robot’s exact pose and all poses and velocities of all relevant objects for the MDP.A denotes the action

space, such as robot armmovements and gripper open/close actions. The transition distribution T denotes

how states change from time t to t+ 1 as the robot takes actions, i.e.,

st+1 ∼ T (· | st, at). (2.1)
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The agent starts in an initial state sampled from s0 ∼ µ(s) where µ represents the (possibly unknown)

starting state dsitribution. The total number of timesteps the agent can take before the environment resets

itself according to µ is T .

At each timestep, the agent receives a reward rt from the reward function R(st, at, st+1) that gives

feedback regarding how good or bad the action taken was in the MDP. For example, the robot may receive

positive reward for picking up an object in a pick-place MDP, and negative reward for colliding with the

table. In this thesis, we denote the agent’s action distribution as π(a | s), where the goal of the agent is to

search for an action distribution π that maximizes the expected cumulative reward over the entire episode

discounted by the �nal term in the MDP-tuple, γ:

max
π

Eπ,µ,T

[
T∑

t=0

γtR(st, at, st+1)

]

. (2.2)

In robotics, we commonly consider Partially Observed MDPs, where we do not necessarily know full

state information S , but instead the agent observes observations ot from an observation spaceO that only

include partial information. Examples of observations can be RGB camera image observations from a

robot’s front camera. Many works in the literature use S and O interchangeably. In this thesis, I use

observations o whenever I am assuming speci�c observation types, such as RGB camera observations. In

other cases where no speci�c structure of the observation space is assumed, I use the state notation s so

that notation is more similar to most works in RL. Finally, some of my chapters, especially in Part III, do

not assume access to the reward function and instead learn the reward function R. However, the overall

goal of the policy remains the same as in Equation (2.2), just that the agent may be optimizing π over a

learned reward function instead of one given by the MDP.
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2.2 Imitation Learning (IL)

Another approach to training robots that I use in Chapter 5, Chapter 6, and Chapter 7 is imitation learning,

where the agent trains π to mimic demonstration data in a pre-collected dataset D.

In a standard imitation learning setting, there is no reward function. Instead, the goal is tomaximize the

probability of mimicing ground truth actions sampled from the datasetD given the same states. Therefore,

the imitation learning objective for a probabilistic policy π(· | s) can be described as:

max
π

E(s,a)∼D [log π(a | s)] , (2.3)

where we are maximizing the log of the probability of the given action (equivalent to maximizing the

probability of the action).

2.3 O�line Reinforcement Learning

Finally, one approach that I use throughout the entire thesis is o�ine RL, also occasionally referred to

as batch RL in the literature. In O�ine RL, we also assume access to a pre-collected dataset D just like

in IL, but we typically also know the reward function. However, the agent’s goal is still to maximize the

same objective as in RL for a given MDP (Equation (2.2)). Therefore, o�ine RL approaches typically train

the policy on some objective that trades o� maximizing the rewards in the dataset D while constraining

the policy to the actions in D, essentially blending Equation (2.3) and Equation (2.2) in di�erent ways

depending on the speci�c algorithm.

In this thesis, as I am focused speci�cally on adaptation, o�ine RL is used in the context of �rst pre-

training o�ine using a given o�ine RL algorithm and then taking the learned policy π online to continue

maximizing rewards in the MDP that generated the data in D or to maximize rewards for a separate, but

related, MDP that represents a new task or new scene for the robot to adapt to.
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Part I

Pre-training Robots Policies for E�cient Adaptation
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Chapter 3

Scalable Policy Pre-Training via Language Instruction Relabeling

Pre-Training Data

LLM Relabeling

1. Get mug from shelf 

2. Put mug in coffee machine 

3. Press brew button

LLaMA

Brew Coffee

SPRINT 

Policy Pre-Training 

Target Task Finetuning

+

Open Microwave

Remove Lid

Pick up Mug

Automatic Pre-Training 

Task Generation

Robot  

Trajectories

Language 

Instructions

Expanded 
Pre-Training Data

Cross-Trajectory 

Chaining
τ

A

τ
B

“Clean Mug”

“Place in  

Coffee Machine”

“Clean Mug and Place in Coffee Machine”

+

Serve on Plate

Figure 3.1: SPRINT is a scalable approach for pre-training robot policies with a rich repertoire of skills while
minimizing human annotation e�ort. Given a dataset of language-annotated trajectories for o�ine pre-
training, SPRINT automatically expands the skill set via LLM-based instruction relabeling and cross-

trajectory skill chaining to enable e�cient �netuning on unseen target tasks.

3.1 Introduction

When humans learn a new task, e.g., how to cook a new dish, we rely on a large repertoire of previously

learned skills, like “chopping vegetables" or “boiling pasta", that make learning more e�cient. Similarly,

much work in robot learning aims to equip robots with a set of useful skills for improving learning ef-

�ciency [342, 305, 131, 217, 282, 121]. A common approach to acquiring a rich skill set is to pre-train

policies on a wide range of tasks. Recent works have employed language instructions as a way for humans

to manually de�ne such tasks for policy training, typically via hindsight annotation of large, pre-collected
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robot experience datasets [237, 218, 219, 39]. While the resulting policies show impressive capabilities,

generalization to new tasks requires a large set of pre-trained skills and thus many pre-training tasks. As

a result, prior works resorted to annotating robot trajectory datasets with hundreds of thousands of human

instruction labels [219], limiting their application outside industrial contexts. Can we instead devise a pre-

training approach that similarly equips robots with a wide repertoire of skills but minimizes the need for

human task annotations?

We introduce SPRINT (Scalable Pre-training via Relabeling Language INsTructions), a scalable pre-

training approach that equips robots with a large set of skills while substantially reducing human labeling

e�ort (see Figure 3.1). Given an initial set of language-labeled pre-training tasks, SPRINT uses extensive

automated relabeling to greatly expand this task set without additional human e�ort. Given a dataset

of robot trajectories with initial language instruction annotations, we leverage two core ideas to grow

the number of tasks. First, we leverage the rich knowledge captured in large language models (LLMs) to

iteratively combine consecutive language instructions into more complex tasks, e.g., “place mug in co�ee

machine” and “press brew button” into “make co�ee”. Second, we propose a language-conditioned o�ine re-

inforcement learning (RL) objective that “stitches” multiple trajectory segments from the data to form new

tasks, a process we call “skill chaining” since it allows the policy to learn longer-horizon skills. Through the

combination of both techniques, SPRINT creates a richer pre-training task set that can help the agent gen-

eralize to new tasks. We demonstrate that SPRINT-pre-trained robots can leverage their resulting larger

skill repertoire to more e�ciently learn new downstream tasks.
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In summary, our contributions are threefold: (1) we propose SPRINT, a scalable pre-training approach

for robot policies that minimizes human task annotation e�ort via LLM-based aggregation and cross-

trajectory skill chaining, (2) we introduce ALFRED-RL, an RL benchmark for the popular ALFRED house-

hold task simulator [328], to test our pre-trained agents on a rich set of long-horizon, semantically mean-

ingful tasks, (3) we demonstrate that policies pre-trained with SPRINT learn downstream tasks more e�-

ciently than prior pre-training approaches, both on challenging ALFRED tasks and in a real robot kitchen

manipulation setup.

3.2 Related Work

Language in RL. There is a large body of work at the intersection of natural language processing and be-

havior learning for robotics, and the �eld has been further accelerated by the recent successes in training

large, general-purpose language models. Language has been used to structure agents’ representations [13,

252], learn reward functions [98], guide task learning via recipes [35, 14] and perform long-horizon plan-

ning [144, 7, 147, 331]. Another line of work has used language to de�ne a wide range of tasks for pre-

training policies, resulting in impressive generalization capabilities [218, 219, 39]. Yet, these works require

collecting hundreds of thousands of costly human language instructions. Our approach SPRINT builds

on this line of work but introduces two novel objectives for automatic relabeling of training task instruc-

tions, thereby substantially reducing the amount of human labeling required for successful pre-training.

Prior works have also investigated automated language instruction generation [65, 63, 189], but they fo-

cus on online learning and make assumptions that are hard to scale, e.g., hand-de�ned grammars [65] or

privileged state information [189, 63]. In contrast, we perform o�ine pre-training and use large language

models for scalable task generation.

Pre-trainingPolicies forRL.Developing policy pre-training approaches for faster downstream learn-

ing has been investigated for many years [148, 348, 136]. Recent advances in o�ine RL [187] enabled
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approaches that can pre-train agents o�ine and e�ectively �netune them on online tasks [277, 330, 250,

171]. However, these approaches require target-task reward annotations on the pre-training data and the

resulting policies are only pre-trained to solve the target task. Meta-RL approaches, on the other hand,

pre-train on a range of tasks and thus allow fast adaptation to unseen downstream tasks [89, 99, 294, 256],

yet require the tedious manual de�nition of pre-training tasks by experts. To avoid manual task design,

other works have explored unsupervised pre-training approaches based on behavior diversi�cation [2, 93,

319], extraction of behavior priors from o�ine agent experience [282, 9, 329] or goal state reaching [240,

49]. Closest to ours, Chebotar et al. [49] proposes an objective that randomly selects states to chain to-

gether existing trajectories, while we propose a language skill chaining objective that allows SPRINT to

execute new, composite language instructions. Such unsupervised pre-training approaches [49] learn skill

repertoires without clear meaning, which, as we demonstrate in Section 3.4, lead to worse downstream

task transfer.

Pre-trained Models for Data Augmentation. Obtaining robot (pre-)training data at scale is costly.

Thus, recent works have explored using world knowledge captured in large pre-trained models for enrich-

ing robot learning datasets, e.g., by increasing the visual diversity of trajectories [395, 56, 230] or annotat-

ing unlabeled data [374]. Our approach similarly leverages pre-trained (language) models for automated

data augmentation. By investigating an orthogonal augmentation direction, aggregation and chaining of

natural language instructions, SPRINT is complementary to these methods.

3.3 SPRINT: Scalable Policy Pre-Training with Language Instructions

In this paper, we propose SPRINT (Scalable Pre-training via Relabeling Language INsTructions), an ap-

proach for pre-training robot policies that equips them with a rich repertoire of skills to enable e�cient

�netuning on unseen tasks. Following prior work on agent pre-training, SPRINT assumes access to a large

o�ine dataset D of agent experience [118, 217, 282, 49, 91, 283], collected, e.g., from prior RL runs or via
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Figure 3.2: SPRINT overview. We assume access to a dataset of agent experience with language instruc-
tions for the performed skills (1). Collecting such instructions with human hindsight annotation is a
�exible yet costly approach for de�ning pre-training tasks. Thus, SPRINT introduces two approaches for
automatically growing the set of pre-training tasks without additional human e�ort: (2) by aggregating
language instructions with an LLM and adding the relabeled trajectories back into the pre-training dataset
(Section 3.3.2), (3) by performing cross-trajectory chaining of skills to enable pre-training of skills that are
unseen in the o�ine agent experience (Section 3.3.3).

teleoperation. We further assume that the data is annotated with an initial set of natural language task

instructions, e.g., “put a mug in the co�ee machine” or “push the brew button”, that can be collected in hind-

sight via platforms like Amazon Mechanical Turk [218, 328]. Given a sequence τ of states and actions

from the dataset D, annotators can label sub-trajectories τ1 = [s0, a0, s1, . . . ], τ2 = . . . with free-form

language descriptions z1, z2, . . . of the skills executed in the respective sub-trajectories (see Figure 3.2,

left), resulting in a language-annotated dataset DL.

ApproachOverview. SPRINT equips policieswith a diverse repertoire of skills via language-instruction-

conditioned o�ine RL: given a natural language task description z, the policy π(a|s, z) is rewarded for

successfully executing the instruction (Section 3.3.1). Intuitively, the richer the set of task instructions

during pre-training, the more skills the policy will learn and the more downstream tasks it can �netune

on e�ciently. Thus, SPRINT introduces two approaches for increasing the scale and diversity of the pre-

training task instructions without requiring additional costly human inputs. Firstly, SPRINT leverages
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pre-trained language models to aggregate consecutive instructions into new tasks (Figure 3.2, middle, Sec-

tion 3.3.2). Secondly, SPRINT introduces an objective for cross-trajectory skill-chaining via o�ine RL that

generates novel instruction chains across di�erent trajectories (Figure 3.2, right, Section 3.3.3). SPRINT pre-

trains policies on the combined set of tasks and thereby equips them with a richer skill repertoire. In our

experiments (Section 3.4) we demonstrate that this leads to more e�ective learning of new tasks.

3.3.1 Instruction-Conditioned O�line RL

To pre-train our policy π with the natural language instruction datasetDL, we take inspiration from goal-

conditioned RL [155, 307, 49]: instead of rewarding the policy for reaching goal states, we condition our

policy π(a|s, z) on language instructions z from DL and provide a scalable sparse reward R(s, a, z) to the

agent for reaching the end-state sT of the sub-trajectory. Formally, we de�ne the reward as:

R(s, a, z) =







1, for s = sT

0, otherwise.

(3.1)

We train our policyπ(a|s, z) tomaximize this rewardwith o�ine RL [187] using an instruction-conditioned

critic Q(s, a, z). Speci�cally, we use Implicit Q-Learning [171] as it is performant and easy to tune.

3.3.2 Language-Model-Based Instruction Aggregation

Large language models (LLMs), trained on massive corpora of internet text data, have been shown

to be e�ective at performing a variety of tasks – from question answering to program synthesis – when

prompted with relevant text [80, 43, 364, 293, 139, 408, 58]. Here we use LLMs to aggregate, i.e., paraphrase,

the existing language instructions inDL (see Figure 3.2, middle). Given a trajectory that contains multiple

sub-trajectories, we can aggregate adjacent sub-trajectories into a longer trajectory and relabel its natural
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language annotation with a summary of the individual instructions generated by the LLM, thereby gener-

ating a new higher-level pre-training task that encompasses instructions from multiple sub-trajectories.∗

We use a simple summarization prompt to instruct the language model (see Figure 3.3). Speci�cally, we

aggregate with LLAMA-13B [352], an open-source 13 billion parameter LLMwhich is able to retain impor-

tant information from individual instructions in the overall summary. Like in Section 3.3.1, the reward for

this new aggregated sub-trajectory is 1 at the last transition and 0 otherwise. For example, we prompt the

LLM to summarize the two skills (z1 : “Put a mug in the co�ee machine,” z2 : “Push the brew button”), re-

sulting in a new annotation ẑ1:2 describing both skills (e.g., “Make co�ee”). We then add the new trajectory

back to our datasetDL. Using this technique, we generate new language annotations for all combinations

of consecutive sub-trajectories in our dataset. In practice, this increases the number of task instructions

by 2.5x in ALFRED and 2x in our robot manipulation dataset (see Section 3.4).

3.3.3 Cross-Trajectory Chaining

In addition to generating new pre-training tasks composed of behaviors within the same trajectory (Sec-

tion 3.3.2), we also want to be able to generate pre-training tasks containing behaviors across di�erent

trajectories. For example, if trajectory (A) shows cleaning the mug in the sink while trajectory (B) starts

with placing the mug in the co�ee machine, the agent should be able to learn to clean the mug in the

sink and then place it in the co�ee machine (see Figure 3.2, right), thus learning long-horizon behaviors

that are unseen in the training data. Agents trained with standard o�ine RL can implicitly combine tasks

described from multiple trajectories into longer-horizon behaviors via value propagation, i.e., perform

“stitching” [187]. In our case of instruction-conditioned o�ine RL, values do not naturally propagate from

trajectory (B) back to trajectory (A) due to the di�erent language instruction conditionings for the critic

Q(s, a, zA) and Q(s, a, zB). However, we can actively add “chaining examples” [49], which encourage

∗Other relabeling operations, such as splitting an instruction into lower-level instructions, can also be performed by the LLM.
However, such operations require grounding the LLM in the agent’s observations to determine sub-trajectory split points. We
leave investigating this to future work.
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learning longer-horizon behaviors, to our training dataset by �rst combining language instructions and then

appropriately relabeling rewards. To build such chaining examples, we �rst sample two sub-trajectories τzA

and τzB from di�erent trajectories (see Figure 3.2, right). Next, we create an aggregate instruction ẑ which

indicates that the agent �rst �nishes (A) and then �nishes (B), e.g., “clean the co�ee mug (A) and place it in

the co�ee machine (B).”†

LLM Prompt Example

Summarize the following steps.

1: Pick up the tomato slice.

2: Heat it up in the microwave.

Summary: Microwave a tomato slice.

1: [SKILL 1]

2: [SKILL 2]

...

Summary:

Figure 3.3: A shortened example of the LLM prompt.

Unlike in Section 3.3.2, we cannot simply con-

catenate the two trajectories together and relabel

the reward of the last transition to 1. Since we sam-

pled the two sub-trajectories at random, the last

state of the �rst, sTA , does not directly transition

into the �rst state of the second. To solve this is-

sue, we relabel both τzA and τzB with the aggregate

instruction ẑ and treat them as separate trajectories

with appropriately labeled rewards. For transitions

in τzB , we simply relabel the last transition with a

reward of 1 to be consistent with the 0-1 rewards in

Sections 3.3.1 and 3.3.2. Meanwhile, we would like

to relabel the reward of the last, terminal transition in τzA so that the learned Q-value for this transition,

Q(sTA , aTA , ẑ), will also be consistent with the prior labeling schemes. What reward should we use here?

†Note that we could generate ẑ using the same LLM summarization as in Section 3.3.2. Yet we found the resulting summaries
to often be confusing since randomly paired instructions from di�erent trajectories can rarely be summarizedmeaningfully. We got
the best empirical results by simply concatenating the sampled instructions with the word “and”. Note that we perform chaining
on both the original trajectories and those generated by LLM aggregation in Section 3.3.2.
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Recall that Q-functions trained for sparse reward (Eq. 3.1) intuitively represent a value proportional to

the probability of reaching goal state sTz at time T [49, 94]:

Qπ(st, at, z) = E[
∑

t′=t

γt
′−tR(st′ , at′ , z)] = E

[
γT−t1 [sT = sTz ]

]
∝ P π(sT = sTz |st, at). (3.2)

where γ ∈ (0, 1) denotes the discount factor. Following this intuition, the Q-value learned for the last

transition of (A) should be proportional to the probability of �nishing the remainder of the combined task

ẑ, i.e., proportional to the likelihood of �nishing (B) from sTA when taking action aTA . Following Eq. 3.2,

Q(sTA , aTA , zB) is this probability. Intuitively, if there are transitions in the dataset which indicate that

�nishing (B) from sTA by taking action aTA is possible, then this Q-value should be non-zero and the agent

will learn to chain (A) and (B) together through their aggregate instruction ẑ. Our reward labels for the

two trajectories with aggregate instruction ẑ are therefore:

R(s, a, ẑ) =







1, for s = sTB

Q(s, a, zB), for s = sTA

0, otherwise.

(3.3)

Since Q changes during training, we compute the rewards in Eq. 3.3 in each batch while training. Full

SPRINT pseudocode is listed in Alg. 1.

3.4 Experiments

In our experiments, we investigate how well an agent pre-trained with SPRINT performs on challenging

unseen tasks. Thus, we answer the following questions: (1) Does SPRINT enable more e�cient �netuning

on unseen target tasks than previous pre-training approaches? (2) Can SPRINT agents execute unseen
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Algorithm 1 SPRINT Algorithm

Require: Dataset DL w/ language instruction labels, LLM
1: AggregateSkills(DL, LLM)
2: while not converged do

3: τz ← D
L: Sample an annotated skill (sub-)trajectory

4: Train o�ine RL on τz
5: τagg

1
, τagg

2
← ChainSkills(DL, LLM)

6: Train o�ine RL on τagg
1
, τagg

2

7: procedure AggregateSkills(DL, LLM) ▷ Sec. 3.3.2
8: for composite trajectory τz̄ in DL do

9: for all adjacent sub-trajectories
[
τzi ...τzj

]
do

10: Assign name from LLM: LLM(zi...zj) = ẑi:j
11: τẑi:j ← Concat

[
τzi , ..., τzj

]
and relabel with ẑi:j and reward from Eq. 3.1.

12: DL = DL ∪
{
τẑi:j

}

13: procedure ChainSkills(DL, LLM) ▷ Sec. 3.3.3
14: Sample random τz1 , τz2 ∼ D

L

15: Assign new name : ẑ = “{z1} and {z2}”
16: τagg

1
← Relabel τz1 w/ ẑ and rew from Eq. 3.3

17: τagg
2
← Relabel τz2 w/ ẑ and rew from Eq. 3.3

18: return τagg
1
, τagg

2

language instructions zero-shot? (3) Does augmentation via language relabeling lead to more generalizable

policies than through goal image relabeling?

3.4.1 Experimental Setup

We evaluate our approach on two image-based environments (see Figure 3.4): ALFRED-RL, a simulated

RL benchmark we introduce, and a real robot kitchen.

ALFRED-RL. Our goal is to compare di�erent pre-training approaches on a diverse set of seman-

tically meaningful, long-horizon tasks. Yet, existing multi-task RL environments typically evaluate only

on short-horizon or semantically meaningless tasks [392, 237]. Thus, we introduce a new RL benchmark

based on the ALFRED household task simulator [328]. While ALFRED abstracts away low-level agent con-

trol into discrete actions like “pick up” or “turn left,” its 100+ rich indoor scenes with many interactable

objects allow to evaluate an agent’s capabilities for solving long-horizon household tasks from a rich task

distribution. The original benchmark focuses on imitation learning, but we extend it to support training

RL agents through a gym interface with egocentric RGB observations and an action space consisting of
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Figure 3.4: Left: ALFRED provides a rich set of long-horizon, meaningful tasks and a dataset of 6.6k
language-annotated demos. We introduce the ALFRED-RL Benchmark which tests �netuning of RL agents
on unseen tasks and scenes. Right: Our Jaco robot arm with RGB image-based control.

12 discrete action choices and 82 interactable object types [273]. We create three evaluation task sets that

test progressively more challenging axes of generalization: EVALINSTRUCT uses unseen human-generated

instructions on familiar scenes, EVALLENGTH uses tasks that are longer than any observed in pre-training,

testing “stitching” capabilities, and EVALSCENE uses tasks in unseen �oorplans.

Real-World Robot KitchenManipulation. To evaluate pre-training approaches on end-to-end low-

level robot control, we design a set of stylized kitchen manipulation tasks with a Kinova Jaco 2 robot arm.

The policy’s inputs are RGB images from a wrist-mounted and a third-person camera and it produces

continuous end-e�ector (3-dim) displacement actions and a discrete gripper open/stay/close action at a

control frequency of 10Hz. We collect a dataset of 329 long-horizon trajectories via human teleoperation

with the setup from Dass et al. [76], each consisting of multiple language-annotated sub-trajectories like

“pick up the apple fruit,”, “place the black bowl in the dish rack,” etc. For evaluation, we construct three

long-horizon tasks, sequencing 2 to 8 “primitive skills” like the ones mentioned above, in environment

con�gurations that are unseen in the pre-training data. We collect 25 demonstrations for each of the three

tasks to evaluate o�ine �ne-tuning performance of di�erent pre-trained policies.
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Comparisons. We compare SPRINT against common policy pre-training approaches, behavioral

cloning and o�ine goal-conditioned RL: Language-conditioned BC (L-BC) [150, 218]: Behavior cloning

(BC) conditioned on the individual language instructions; Episodic Transformers (ET) [273]: BC con-

ditioned on sequences of language instructions – ET is the best-performing end-to-end learned policy on

the ALFRED leaderboard that does not use privileged domain knowledge like hand-engineered policies or

voxel maps; Actionable Models (AM) [49]: Goal-conditioned o�ine RL with randomly sampled goal ob-

servations from the same training data as SPRINT. We also evaluate SayCan [7]: Top-down LLM planning

over pre-trained, language-conditioned policies.

All methods use the same architectures, hyperparameters, and training data DL where possible. In

ALFRED-RL, all methods use the same language token conditioned transformer policy architecture pro-

posed by Pashevich, Schmid, and Sun [273] speci�cally for ALFRED; we use a transformer critic model

with a separate output head for each critic, following Snell et al. [333]. On the real robot, all methods use

an RNN architecture with “action chunking” [411] proposed by Dass et al. [75]. Results are means and

standard deviations over 3 seeds.

Zero-Shot Overall Zero-Shot Split by Length Fine-tuning on  EVAL
SCENE

EVAL
INSTRUCT

EVAL
LENGTH

Figure 3.5: ALFRED-RL evaluation results. Left: Zero shot performance on EVALINSTRUCT and
EVALLENGTH. SPRINT is able to complete substantially more subtasks than prior approaches. Middle:
Breakdown of performance by task length. SPRINT performs well on challenging, long tasks. Right:
Finetuning performance in unseen �oor plans of EVALSCENE. SPRINT learns in new �oorplans more e�ec-
tively by reaching higher performance.
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3.4.2 SPRINT Solves Long-Horizon Tasks Zero-Shot

We �rst test the e�ectiveness of SPRINT’s pre-training by analyzing zero-shot performance across 100

unseen tasks in the EVALINSTRUCT evaluation set. We report results in Figure 3.5 (left). Our approach,

SPRINT, achieves 2-8x higher zero-shot task performance than prior pre-training approaches AM and

L-BC. Even though ET also trains to condition on long-horizon instruction sequences like SPRINT, ours

still outperforms it overall by 2x. To better understand the di�erences between the methods, we report

the breakdown of returns by length of the evaluation task in Figure 3.5 (middle). We �nd that all meth-

ods except AM achieve similar performance on length 1 tasks. However, on long-horizon tasks, SPRINT

achieves much higher returns than all baselines since it can leverage the LLM to automatically generate

longer-horizon pre-training tasks. In contrast, L-BC trains only on the human-provided, shorter-horizon

annotations and thus cannot zero-shot perform longer tasks. Meanwhile SayCan, with the same LLM as

used for SPRINT, commonly generates incorrect plans that lead to incorrect behaviors. This problem is ex-

acerbated on longer tasks; the chance of planning errors increases with task length. In contrast, SPRINT’s

pre-training enables more robust long-horizon task execution. Similar to our approach, AM trains to reach

long-horizon goals during pre-training but the results in Figure 3.5 (left) show that its pre-training with

goal-state conditioning is less e�ective than our language-conditioned pre-training. These results also

hold for the EVALLENGTH task set, which tests generalization to task horizons beyond the ones seen during

training. On these most challenging tasks, SPRINT outperforms the best baseline by 2.5x.

3.4.3 SPRINT Finetunes E�ectively in Unseen Environments

ALFRED-RL.We test SPRINT’s �netuning performance to unseen tasks on themost challenging EVALSCENE

task set in unseen household �oor plans with 50k environment interactions. This corresponds to a realistic

scenario in which an agent is placed in a new household environment and needs to leverage skills learned

during pre-training to solve new tasks with minimal environment interaction. To implement �netuning
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for SPRINT and AM, we condition the policy on a language instruction or goal image from the target task

respectively and then run IQL with online data collection. For L-BC and ET, we �rst pre-train a language-

conditioned critic with IQL on the pre-training dataset and then �netune both the policy and critic with

online IQL. Sparse, per-subtask completion reward is given to agents during �ne-tuning.

We report �netuning results in Figure 3.5 (right). SPRINT quickly achieves higher downstream task

return than the best prior work. Speci�cally, L-BC converges to lower peak performance than SPRINT

and ET performs poorly, perhaps because transferring from instruction sequences to high-level task de-

scriptions is challenging. Meanwhile, AM performs similarly to L-BC, possibly because unseen goal states

are more di�cult to learn from. In contrast, SPRINT’s pre-training with language conditioning allows for

e�ective transfer even to unseen environments since the semantics of the tasks transfer well: the language

description “place cup in co�ee machine” transfers to many environments while the goal image for the same

task might look very di�erent. Thus, pre-training with language instructions can enable better transfer

for learning tasks in new environments than pre-training to reach goal states. SayCan performs poorly

due to both planning and execution errors as it does not �ne-tune. We also attempted to �rst �ne-tune

SayCan’s primitive policies before running SayCan, but its performance did not change as �ne-tuning its

policies on high-level task instructions did not improve primitive instruction execution.

Real Robot. We also measure �netuning performance on an unseen environment on our real robot

setup. We evaluate on three tasks consisting of 2, 4, and 8 subgoals, respectively:

1. Bake bread in the oven: The robot must (1) pick up the bread, (2) place it in the oven.

2. Serve heated milk in the bowl: The robot must (1) pick up the milk, (2) place it in the black bowl, (3)

pick up the bowl with milk, (4) place the bowl in the oven.
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Task: “Serve milk in the bowl and butter and baked bread in the plate.”

“Pick up the milk”
“Place the milk in 

the bowl”

“Pick up the 

butter”
“Place the butter 

in the plate”

“Pick up the 

bread”

“Place the bread 

in the oven”

“Pick up the 

baked bread”

“Place the bread 

in the plate”

Figure 3.6: Successful rollout of a SPRINT agent o�ine �netuned for the task above with object combina-
tions not in the pre-training data. SPRINT solves all 8 tasks in sequence.

3. Serve milk in the bowl and butter and baked bread in the plate: (1) pick up milk, (2) put it in the black

bowl, (3) pick up butter, (4) put it in the plate, (5) pick up the bread, (6) bake it in the oven, (7) pick

up the bread from the oven, (8) place the bread in the plate.

We collect 25 demonstrations per task for o�ine �netuning. We compare SPRINT against L-BC, a

version of L-BC trained on full sequences of concatenated language instructions (L-BC Composite), and

a method that is trained only on the downstream task demonstrations (No pre-train).

Table 3.1: Success rates and number of subgoals com-
pleted after �ne-tuning on the tabletop arrangement
displayed on the left with unseen object combina-
tions over 5 trials.

Length 2 Length 4 Length 8

Method Success # Tasks Success # Tasks Success # Tasks

SPRINT 100% 2.0 60% 3.4 40% 6.2

L-BC Comp. 100% 2.0 40% 2.8 20% 5.2

L-BC 100% 2.0 40% 0.4 0% 2.0

No pre-train 0% 1.0 0% 0.0 0% 0.0

Results in Table 3.1 demonstrate that No Pre-

train performs poorly, indicating that pre-training

is necessary. SPRINT achieves the best success

rates and completes the most subgoals on all tasks.

Compared to L-BC Composite, SPRINT achieves

higher returns and success rates on challenging,

longer tasks. See Figure 3.6 for an example eval-

uation.

3.4.4 Ablation Studies

We verify the e�ectiveness of the components of our approach, with the following ablations: SPRINTw/o

chain removes cross-trajectory chaining (Section 3.3.3), instead trains only on within-trajectory human-

provided and LLM-aggregated tasks; SPRINTNaïve Chain replaces Q-value reward labels when chaining
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with 0’s to test naïve o�ine RL “stitching” with language instruction-conditioned agents. SPRINT w/o

LLM-agg additionally removes LLM aggregation (Section 3.3.2) and chaining, thus training only on the

human-provided task annotations. We report zero-shot ALFRED evaluation results in Table 3.2: each

component of our approach improves zero-shot evaluation performance. There is a large performance

loss when removing LLM aggregation, underlining the importance of leveraging LLMs for automatically

generating long-horizon training tasks. We also see that naïve chaining is worse than not chaining.

3.5 Discussion and Acknowledgements

Table 3.2: Ablations. SPRINT achieves the highest
return.

Ablation EVALINSTRUCT EVALLENGTH

SPRINT (ours) 1.94 ± 0.04 4.40 ± 0.39

SPRINT w/o Chain 1.75 ± 0.11 3.98 ± 0.29

SPRINT Naïve Chain 0.50 ± 0.04 0.26 ± 0.05

SPRINT w/o LLM-agg 0.37 ± 0.01 0.15 ± 0.10

We presented SPRINT, an approach for scalable

agent pre-training that automatically generates

training tasks for o�ine RL via LLM relabeling

and cross-trajectory skill chaining. SPRINT pre-

training leads to higher zero-shot and �netuning

performance on diverse household tasks in the AL-

FRED simulator and on real-robot kitchen manip-

ulation tasks.
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Chapter 4

EXTRACT: E�cient Policy Learning by Extracting Transferable Robot

Skills from O�line Data

Pretrained 

VLM

Turn the stove knob

1. Offline 
Dataset Skill 

Extraction

Open the drawer

…

Skill 1 2. Skill Learning

Skill 
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3. Efficient Transfer to New Tasks
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Figure 4.1: EXTRACT unsupervisedly extracts a discrete set of skills from o�ine data that can be used for
e�cient learning of new tasks. (1) EXTRACT �rst uses VLMs to extract a discrete set of aligned skills from
image-action data. (2) EXTRACT then trains a skill decoder to output low-level actions given discrete skill
IDs and learned continuous arguments. (3) This decoder helps a skill-based policy e�ciently learn new
tasks with a simpli�ed action space over skill IDs and arguments.

4.1 Introduction

Imagine learning to play racquetball as a complete novice. Without prior experience in racket sports, this

poses a daunting task that requires learning not only the (1) complex, high-level strategies to control when

to serve, smash, and return the ball but also (2) how to actualize these moves in terms of �ne-grained motor

control. However, a squash player should have a considerably easier time adjusting to racquetball as they

already know how to serve, take shots, and return; they simply need to learn when to use these skills and
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how to adjust them for larger racquetball balls. Our paper aims to make use of this intuition to enable

e�cient learning of new robotics tasks.

In general, humans can learn new tasks quickly—given prior experience—by adjusting existing skills

for the new task [102, 12]. Skill-based reinforcement learning (RL) aims to emulate this transfer [343,

306, 131, 282, 403, 8, 72, 260, 399, 405] in learned agents by equipping them with a wide range of skills

(i.e., temporally-extended action sequences) that they can call upon for e�cient downstream learning.

Transferring to new tasks in standard RL, based on low-level environment actions, is challenging because

the learned policy becomes more task-speci�c as it learns to solve its training tasks [309, 349, 344, 95,

46]. In contrast, skill-based RL leverages temporally extended skills that can be both transferred across

tasks and yield more informed exploration [282, 329, 406], thereby leading to more e�ective transfer and

learning. However, existing skill-based RL approaches rely on costly human supervision [183, 325, 72,

260] or restrictive skill de�nitions [118, 282, 8] that limit the expressiveness and adaptability of the skills.

Therefore, we ask: how can robots discover adaptable skills for e�cient transfer learning without costly

human supervision?

Calling back to the squash to racquetball transfer example, we humans categorize di�erent racket

movements into discrete skills—for example, a “forehand swing” is distinct from a “backhand return.” These

discrete skills can be directly transferred by making minor modi�cations for racquetball’s larger balls and

di�erent rackets. This process is akin to that of calling a programmatic API, e.g., def forehand(x, y) ,

where learning to transfer reduces to learningwhen to call discrete functions (e.g., forehand() vs backhand() )

and how to execute them (i.e., what their arguments should be). In this paper, we propose a method to

accelerate transfer learning by enabling robots to learn, without expert supervision, a discrete set of skills

parameterized by input arguments that are useful for downstream tasks (see Figure 4.1). We assume access

to an o�ine dataset of image-action pairs of trajectories from tasks that are di�erent from the downstream

target tasks. Our key insight is aligning skills by extracting high-level behaviors, i.e., discrete skills like
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“forehand swing,” from images in the dataset. However, two challenges preclude realizing this insight: (1)

how to extract these input-parameterized skills, and (2) how to guide online learning of new tasks with

these skills.

To this end, we propose EXTRACT (Extraction of Transferable Robot Action Skills), a framework for

extracting discrete, parameterized skills from o�ine data to guide online learning of new tasks. We �rst

use pre-trained vision-language models (VLMs), trained to align images with language descriptions [289]

so that images of similar high-level behaviors are embedded to similar latent embeddings [334], to extract—

from our o�ine data—image embedding di�erences representing changes in high-level behaviors. Next,

we cluster the embeddings in an unsupervised manner to form discrete skill clusters that represent high-

level skills. To parameterize these skills, we train a skill decoder on these clusters, conditioned on the skill

ID (e.g., representing a “backhand return”) and a learned argument (e.g., indicating velocity), to produce

a skill consisting of a temporally extended, variable-length action sequence. Finally, to train a robot for

new tasks, we train a skill-based RL policy to act over this skill-space while being guided by skill prior

networks, learned from our o�ine skill data, guiding the policy for (1) when to select skills and (2) what

their arguments should be.

In summary, EXTRACT enables sample-e�cient transfer learning for robotic tasks by extracting a

meaningful set of skills from o�ine data for an agent to use for learning new tasks. We �rst validate that

EXTRACT learns a well-clustered set of skills. We then perform experiments across challenging, long-

horizon, sparse-reward, image-based robotic manipulation tasks, both in simulation and in the real world

on a Panda Franka arm, demonstrating that EXTRACT agents can more quickly transfer skills to new tasks

than prior work.
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4.2 Related Work

De�ning Skills Manually. Many works require manual de�nition of skills, e.g., as pre-de�ned primi-

tives [306, 274, 196], subskill policies [268, 183, 379], or task sketches [15, 325], making them challenging

to scale to arbitrary environments. Closest to ours, Dalal, Pathak, and Salakhutdinov [72] and Nasiriany,

Liu, and Zhu [260] hand-de�ne a set of skills parameterized by continuous arguments. But this hand-

de�nition requires expensive human supervision and task-speci�c, environment-speci�c, or robot-speci�c

�ne-tuning. In contrast, EXTRACT automatically learns skills from o�ine data, which is much more scal-

able to enable learning multiple downstream tasks. We demonstrate in Section 4.5 that, given su�cient

data coverage, skills extracted from data can transfer as e�ectively as hand-de�ned skills.

Unsupervised Skill Learning. A large body of prior work discovers skills in an unsupervised man-

ner to accelerate learning new tasks. Some approaches use heuristics to extract skills from o�ine data, like

de�ning skills as randomly sampled trajectories [168, 318, 241, 317, 217, 282, 8, 403, 324]. While these ap-

proaches have demonstrated that randomly sampled skill sequences can accelerate downstream learning,

EXTRACT instead uses visual embeddings from VLMs to combine sequences performing similar behaviors

into the same skill while allowing for intra-skill variation through their arguments. We show in Section 4.5

that our skill parameterization allows for more e�cient online learning than randomly assigned skills.

Moreover, Wan et al. [363] also learns skills via clustering visual features; however, in addition to major

di�erences in methodology, they focus on imitation learning—requiring signi�cant algorithmic changes

to facilitate learning new tasks online [251, 175, 413]. Instead, we directly focus on online reinforcement

learning of new tasks.

Another line of work aims to discover skills for tasks without o�ine data. Some learn skills while

simultaneously attempting to solve the task [343, 19, 131, 249, 406, 399]. However, learning the skills and

using them simultaneously is challenging, especiallywithout dense reward supervision. Finally, some prior

works construct unsupervised objectives, typically based on entropy maximization, to learn task-agnostic
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behaviors [93, 370, 113, 320, 178]. However, these entropy maximization objectives lead to learning a large

set of skills, most of which form random behaviors unsuitable for any meaningful downstream task. Thus,

using them to learn long-horizon, sparse-reward tasks is di�cult. We focus on �rst extracting skills from

demonstration data, assumed to have meaningful behaviors to learn from, for online learning of unseen,

sparse-reward tasks.

4.3 Preliminaries

Problem Formulation. We assume access to an o�ine dataset of trajectories D = {τ1, τ2, ...} where

each trajectory consists of ordered image observation and action tuples, τi = [(s1, a1), (s2, a2), ...]. The

downstream transfer learning problem is formulated as a Markov Decision Process in which we want to

learn a policy π to maximize downstream rewards. We note that the o�ine dataset D does not contain

trajectories from downstream task(s); we assume that the state space S has the same dimensions and that

actions in D can be used to solve downstream tasks.

SPiRL. In order to extract skills from o�ine data and use these skills for a new policy, we build on

top of a previous skill-based RL method, namely SPiRL [282]. SPiRL focused on learning skills de�ned by

randomly sampled, �xed-length action sequences. We brie�y summarize SPiRL here: Given H-length se-

quences of consecutive actions fromD: ā = a1, ..., aH , SPiRL learns (1) a generative skill decodermodel,

pa(ā | z), which decodes learned, latent skills z encoded by a skill encoder q(z | ā) into environment

action sequences ā, and (2) a state-conditioned skill prior pz(z | s) that predicts which latent skills z are

likely to be useful at state s. To learn a new task, SPiRL trains a skill-based policy π(z | s), whose outputs

z are skills decoded by pa(ā | z) into low-level environment actions. The objective of policy learning

is to maximize returns under π(z | s) with a KL divergence constraint to regularize π against the prior

pz(z | s).
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Figure 4.2: EXTRACT consists of three phases. (1) Skill Extraction: We extract a discrete set of skills from
o�ine data by clustering together visual VLM di�erence embeddings representing high-level behaviors.
(2) Skill Learning: We train a skill decoder model, pa(ā | z, d), to output variable-length action sequences
conditioned on a skill ID d and a learned continuous argument z. The argument z is learned by training
pa(ā | z, d) with a VAE reconstruction objective from action sequences encoded by a skill encoder, q(z |
ā, d). We additionally train a skill selection prior and skill argument prior pd(d | s), pz(z | s, d) to predict
which skills d and their arguments z are useful for a given state s. Colorful arrows indicate gradients from
reconstruction, argument prior, selection prior, and VAE losses. (3) Online RL: To learn a new task, we
train a skill selection and skill argument policy with RL while regularizing them with the skill selection
and skill argument priors.

4.4 Method

EXTRACT aims to discover a discrete skill library from an o�ine dataset that can be modulated through

input arguments for learning new tasks e�ciently. EXTRACT operates in three stages: (1) an o�ine skill

extraction stage, (2) an o�ine skill learning phase in which we train a decoder model to reproduce action

sequences given a skill choice and its arguments, and �nally (3) the online RL stage for training an agent

to utilize these skills for new tasks. See Figure 4.2 for a detailed overview.

4.4.1 O�line Skill Extraction

Feature extraction. We leverage vision-language models (VLMs), trained to align large corpora of images

with natural language descriptions [289, 252, 375, 221], to extract high-level features used to label skills.

Although our approach does not require the use of language, we utilize VLMs because, as VLMs were
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trained to align images with language, VLM image embeddings represent a semantically aligned embedding

space. However, one main issue precludes the naïve application of VLMs in robotics. In particular, VLMs

do not inherently account for object variations or robot arm starting positions across images [70, 334, 299,

367]. But in robot manipulation, high-level behaviors should be characterized by changes in arm and object

positions across a trajectory—picking up a cup should be considered the same skill regardless of if the cup

is to the robot’s left or right. Our initial experiments of using the embeddings directly resulted in skills

speci�c to one type of environment layout or object. Therefore, to capture high-level behaviors, we use

trajectory-level embedding di�erences by taking the di�erence of each VLM image embedding with the

�rst one in the trajectory:∗

et = VLM(st)− VLM(s1). (4.1)

… … …
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Median Filter 
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changes or trajectory ends
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Figure 4.3: Skill label assignment consists
of (1) using the VLM embedding di�er-
ences for clustering, then (2) applying a
median �lter over the labels to smooth out
noisy assignments.

Skill label assignment. After creating embeddings et

for each image st, we assign skill labels in an unsupervised

manner based on these features. Inspired by classical algo-

rithms from speaker diarization, a long-studied problem in

speech processing where the objective is to assign a “speaker

label” to each speech timestep [16], we �rst perform unsuper-

vised clustering with K-means on the entire dataset of embed-

ding di�erences ei to assign per-timestep skill labels (the label

is the cluster ID), then we smooth out the label assignments with a simple median �lter run along the tra-

jectory sequence to reduce the frequency of single or few-timestep label assignments. See Figure 4.3 for a

visual demonstration of this process.

∗To ensure that each timestep has an embedding, we assign embedding e1 to be identical to e2.
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In summary, we �rst extract observation embedding di�erence features with a VLM and then perform

unsupervised K-means clustering to obtain skill labels for each trajectory timestep. This forms the skill-

labeled dataset Dd = {τ1d , τ
2
d , ...}, where each τd is a trajectory of sequential (s, a) tuples that all belong

to one skill d. Next, we perform skill learning on Dd.

4.4.2 O�line Skill Learning

We aim to learn a discrete set of skills, parameterized by continuous arguments, similar to a functional API

over skills (see Figure 4.2 middle). Therefore, we train a generative skill decoder pa(ā | z, d) to convert

a discrete skill choice d and a continuous argument for that skill, z, into an action sequence. As alluded

to in Section 4.3, we build upon SPiRL by Pertsch, Lee, and Lim [282]. However, they train their decoder

to decode �xed-length action sequences from a single continuous latent z. In contrast, we automatically

extract a set of variable-length skill trajectories with labels denoted d and parameterize each skill by a

learned, continuous latent argument z.†

We train an autoregressive VAE [167] consisting of the following learned neural network components:

a skill argument encoder q(z | ā, d)mapping to a continuous latent z conditioned on a discrete skill choice

d and an action sequence ā, and an autoregressive skill decoder pa(ā | z, d) conditioned on the latent z

and the discrete skill choice d.‡ Because the action sequence ā can be of various lengths, the decoder also

learns to produce a continuous value l at each autoregressive timestep representing the proportion of the

skill completed at the current action. This variable is used during online RL to stop the execution of the

skill when l equals 1 (see Appendix B.2.1 for further details).

Recall that SPiRL also trains a skill prior network pz(z | s) that predicts which z is useful for an

observation s; this prior is used to guide a high-level policy toward selecting reasonable zwhile performing

RL. In contrast with SPiRL where z uniquely represents a skill, we train two prior networks, one to guide

†To simplify notation, we use z for both our method and SPiRL. However, it is important to note that z uniquely determines
the skill in SPiRL, while z denotes a continuous latent argument in our method.

‡pa(ā | z, d) can also be state-conditioned. We opt not to for better transfer to new tasks with unseen states.
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the selection of the skill d, pd(d | s), and one to guide the selection of its argument z given d, pz(z | s, d).

These are trained with the observation from the �rst timestep of the sampled trajectory, s1, to be able to

guide a skill-based policy during online RL in choosing d and z. Our full objective for training this VAE is

to maximize the following:

E
ā,d,s1∼Dd
z∼q(·|ā,d)

[[
|ā|∑

t=1
log pa(at, l | z, d)
︸ ︷︷ ︸

action rec. + progress pred.

]

+ β KL (q(z | ā, d) ∥ N(0, I))
︸ ︷︷ ︸

VAE encoder KL regularization

+ log pd(d | s1)
︸ ︷︷ ︸

discrete skill prior

+ log pz(sg(z) | s1, d)
︸ ︷︷ ︸

continuous arg. prior

]

,

(4.2)

where the stop-gradient sg(·) prevents prior losses from in�uencing the encoder and z is sampled from

the encoder q(z | ā, d). The �rst two terms are the β-VAE objective [137]; the last two train priors to

predict the correct skill d and continuous argument z given s1.

Additional �ne-tuning. On extremely challenging transfer scenarios, demonstrations may still be

needed to warm-start reinforcement learning [355]. EXTRACT can also �exibly be applied to this setting

by using the same K-means clustering model from Section 4.4.1, which was trained to clusterDd, to assign

skill labels to an additional, smaller demonstration dataset. After pre-training on Dd, we then �ne-tune

the entire model on that labeled demonstration dataset before performing RL.

4.4.3 Online Skill-Based Reinforcement Learning

Finally, we describe how we perform RL for new tasks by training a skill-based policy to select skills and

their arguments to solve new tasks. See Figure 4.2, right, for an overview of online RL.

Policy parameterization. After pre-training the decoder pa(ā | z, d), we treat it as a frozen lower-

level policy that a learned skill-based policy can use to interact with a new task. Speci�cally, we train a

skill-based policy π(d, z | s) to output a (d, z) tuple representing a discrete skill choice and its continuous

argument. We parameterize this policy as a product of two policies: π(d, z | s) = πd(d | s)πz(z | s, d) so

that each component of π(d, z | s) can be regularized with our pre-trained priors pd(d | s) and pz(z | s, d).
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Intuitively, this parameterization separates decision-making into what skill to use and how to use it. The

complete factorization of the skill-based policy follows:

π(a | s) = pa(ā | z, d)
︸ ︷︷ ︸

skill decoder

· π(d, z | s) = pa(ā | z, d)
︸ ︷︷ ︸

skill decoder

·πd(d | s) · πz(z | s, d)
︸ ︷︷ ︸

learned skill-based policy

. (4.3)

Policy learning. We can train the skill-based policy with online data collection using any entropy-

regularized RL algorithm, such as SAC [123] or RLPD [23], where we regularize against the skill priors

instead of against a max-entropy uniform prior. Because we have factorized π(d, z | s) into two separate

policies, we can easily regularize each with the priors trained in Section 4.4.2. The training objective for

the policy with SAC is to maximize over πd, πz :

E
s,d∼πd(.|s)
z∼πz(.|s,d)

[

Q(s, z, d)− αz KL(πz(z | s, d) ∥ pz(· | s, d))
︸ ︷︷ ︸

skill argument guidance

−αd KL(πd(d | s) ∥ pd(· | s))
︸ ︷︷ ︸

skill choice guidance

]

,

(4.4)

where αz and αd control the prior regularization weights. The critic objective is also correspondingly

modi�ed (see Appendix Algorithm 6). Despite the hierarchical architecture, this objective is stable to train

as the lower-level skill decoder is frozen and the priors regularize the high-level policy.

In summary, EXTRACT�rst extracts a set of discrete skills fromo�ine image-action data (Section 4.4.1),

then trains an action decoder to take low-level actions in the environment conditioned on a discrete skill

and continuous latent (Section 4.4.2), and �nally performs prior-guided reinforcement learning over these

skills online in the target environment to learn new tasks (Section 4.4.3). See Algorithm 3 (appendix) for

the pseudocode and Appendix B.2.1 for additional implementation details.
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4.5 Experiments

Our experiments investigate the following questions: (1) Does EXTRACTdiscovermeaningful, well-aligned

skills from o�ine data? (2) Do EXTRACT-acquired skills help robots learn new tasks? (3) What compo-

nents of EXTRACT are important in enabling transfer?

4.5.1 Experimental Setup

We evaluate EXTRACT on two long-horizon, continuous-control, robotic manipulation domains: Franka

Kitchen [104] and LIBERO [201]. and the real-world FurnitureBench [135]. All environments use image

observations and sparse rewards. For both Franka Kitchen and LIBERO, our method EXTRACT uses the

R3M VLM [252] and K-means with K = 8 for o�ine skill extraction (Section 4.4.1). In FurnitureBench,

K = 6. We list speci�c details below; see Appendix B.2.3 for more.

Franka Kitchen: This environment, originally from Gupta et al. [118] and Fu

et al. [104] contains a Franka Panda arm operating in a kitchen environment. Sim-

ilarly to Pertsch, Lee, and Lim [282], we test transfer learning of a sequence of 4

subtasks never performed in sequence in the dataset. Agents are given a reward of 1

for completing each subtask.

LIBERO: LIBERO [201] consists of a Franka Panda arm interactingwithmany ob-

jects and drawers. We test transfer to four task suites, LIBERO-{Object, Spatial,

Goal, 10} consisting of 10 unseen environments/tasks each, spanning various

transfer scenarios (40 total tasks). LIBERO tasks are language conditioned (e.g., “turn

on the stove and put the moka pot on it”); for pre-training and RL, we condition all methods on the lan-

guage instruction. Due to LIBERO’s di�culty [210], for all pre-trained methods, we �rst �ne-tune to a
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provided additional target task dataset with 50 demos per task before performing RL. During RL, we �ne-

tune on all tasks within each suite simultaneously. To the best of our knowledge, we are the �rst to report

successful RL results on LIBERO tasks.

FurnitureBench: FurnitureBench [135] tests an agent’s ability to assemble real-

world furniture with a Franka Panda arm. We pre-train on one-leg assembly data with-

out initial object placement randomness and test real-world RL transfer to the same task

with ± 5cm of initial object and end-e�ector position randomness, plus ± 15 degrees of

end-e�ector angle randomization. We use RLPD [23], a sample-e�cient actor-critic RL algorithm, for more

e�cient real-world training. RL is run for 100 training trajectories after pre-training on 500 demonstration

trajectories.

Baselines and Comparisons. We compare: (1) an oracle (RAPS [72]), which is given ground truth

discrete skills, with continuous input arguments, designed by humans speci�cally for Franka Kitchen;

(2) methods that pre-train with the same data—namely SPiRL [282] which extracts sequences of �xed-

length random action trajectories as skills, EXTRACT-UVD which replaces our discrete skill extraction

with UVD’s VLM-based mechanism [409], and BC, behavior cloning using the same o�ine data but no

temporally extended skills; and (3) SAC [123], i.e., RL without any o�ine data. See Appendix B.2 for

implementation details. Sim results include standard deviations over 5 seeds.

4.5.2 O�line Skill Extraction

We �rst test EXTRACT’s ability to discover meaningful, well-aligned skills during skill extraction. In

Figure 4.4, we plot K-means (K = 8) skill assignments in Franka Kitchen. We project VLM embedding dif-

ferences down to 2-D with PCA for visualization. These skill assignments demonstrate that unsupervised

clustering of VLM embedding di�erences can create distinctly separable clustering assignments. For exam-

ple, skill 4 (Figure 4.4, top left) demonstrates a cabinet opening behavior. See additional visualizations for
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Cluster 0: Twisting/Grabbing Knob

Cluster 4: Opening Drawer

Cluster 3: Moving Towards Kettle

Cluster 6: Grabbing/Flipping Knob

Traj 1

Traj 2

Traj 1

Traj 2

Traj 1

Traj 2

Traj 1

Traj 2

PCA Cluster Embeddings

Figure 4.4: 100 randomly sampled trajectories from the Franka Kitchen dataset after being clustered into
skills and visualized in 2D (originally 2048) with PCA. Even in 2 dimensions, clusters can be clearly distin-
guished. We visualize 2 randomly sampled skills in each cluster, demonstrating that our skill assignment
mechanism successfully aligns trajectories performing similar high-level behaviors.

Franka Kitchen LIBERO-Object  LIBERO-Spatial LIBERO-Goal LIBERO-10

Figure 4.5: SPRINT outperforms SPiRL and EXTRACT-UVD in RL across all comparisons, demonstrating
the advantages of our clustered skill-space. SAC and BC struggle, demonstrating the need for skill-based
RL. In LIBERO-{Object, Spatial, Goal}, return is success rate.

all environments in Appendix B.3.1. We also analyze quantitative clustering statistics in Appendix B.3.2.

Next, let’s see how these skills help with learning new tasks.

4.5.3 Online Reinforcement Learning of New Tasks

Simulated Envs. We investigate the ability of all methods to transfer to new tasks in simulation in Fig-

ure 4.5. In Kitchen, EXTRACTmatches the oracle performance while being 10xmore sample-e�cient than

SPiRL, with SPiRL needing 3M timesteps to reach EXTRACT’s performance at 300k. In all LIBERO suites,

EXTRACT performs best in either sample e�ciency or �nal performance due to its discrete-continuous

41



skill separation enabling easier downstream RL; it outperforms SPiRL and EXTRACT-UVD the most in

LIBERO-10, the suite with the longest-horizon tasks. EXTRACT-UVD is unstable in Franka Kitchen (see

Appendix B.3.4 for analysis) and generally performs worse as UVD’s skill extraction mechanism does not

perform our discrete skill clustering. Meanwhile, SAC and BC perform poorly, indicating our tasks are

di�cult to solve with standard RL or without skills.

Our method outperforms others due to its semantically aligned, discrete skill-space. For example, to

open drawers, EXTRACT’s policy only needs to learn a single discrete drawer-opening skill when the

gripper is near any drawer. In contrast, SPiRL requires memorizing and distinguishing continuous skills

for each speci�c drawer-opening behavior. Additionally, EXTRACT allows easier exploration later in the

task, enabling the policy to reuse the same skill for other drawers. For more details, see Appendix B.5.

Next, we conduct an ablation study on EXTRACT’s components.

Table 4.1: Furniture RL.

Method Start End

SPiRL 1.35 1.55

EXTRACT 1.90 2.50

Real world. Finally, we assess EXTRACT’s real-world performance on Fur-

nitureBench for one-leg assembly in Table 4.1. We report the average com-

pleted subtask (20 trials) out of a maximum of 5. EXTRACT outperforms SPiRL

both before and after 100 episodes of real-world RL �ne-tuning, showing ef-

fective skill transfer. Overall, EXTRACT excels across 42 tasks and 3 domains,

outperforming other skill-based RL, BC, and online RL methods, both in simulation and on robots.

4.5.4 EXTRACT RL Ablation Studies
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Figure 4.6: Embed-
ding ablations.

VLMs. We �rst ablate the use of VLMs from selecting features for clustering.

Therefore, we compare againstAction, where skill labels are generated by cluster-

ing robot action di�erences. We also compare against Statewhere skills are labeled

by clustering ground truth state di�erences (e.g., robot joints, states of all objects).

State represents an oracle scenario as ground truth states of all relevant objects are
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di�cult to obtain in the real world. We plot results in Franka Kitchen in Figure 4.6.

EXTRACTwith VLM-extracted skills performs best, as both ground truth state and

raw environment action di�erences can be di�cult to directly obtain high-level, semantically meaningful

skills from. For ablations against pure proprioception and CLIP [289], see Appendix B.3.3.
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Figure 4.7: Kitchen
K ablations.

Number of Clusters. Finally, we ablate the number of K-means clusters. Too

few or too many clusters can a�ect RL by balancing the ease of selecting the correct

discrete skill against the complexity of choosing the right continuous argument. In

Figure 4.7, we show average returns at 1M timesteps for EXTRACT in Kitchen with

K = 3, 5, 8, 15. Performance remains stable, with a drop only atK = 15, indicating

that EXTRACT is robust to variations in the number of discovered discrete skills.

4.6 Discussion

We presented EXTRACT, a method for enabling e�cient agent transfer learning by extracting a discrete

set of input-argument parameterized skills from o�ine data for a robot to use in new tasks. Compared to

standard RL, our method operates over temporally extended skills rather than low-level environment ac-

tions, providing greater �exibility and transferability to new tasks, as demonstrated by our comprehensive

experiments.

43



Chapter 5

HAMSTER: Hierarchical Action Models for Open-World Robot

Manipulation

Data: In-Domain Robot Teleop

Imitation Learning

Low-Level Policy 

VLA Models HAMSTER: VLM + 

Imitation Learning

a

Data: Large-Scale 

Robot Teleop

Generalization: Low

...

Vision Language Action Model

a

Data: Easy to Obtain, Off-Domain Data

HAMSTER VLM

a

Generalization: Medium Generalization: High

Data: In-Domain 

Robot Teleop

Low-Level Policy 

Simulators Other RobotWeb Data

Data: In 
Domain 
Robot 
Teleop

✍  Draw 2D 

Path

Point Prediction

Figure 5.1: Overview of HAMSTER, VLAs and “smaller" imitation learning methods. HAMSTER’s hierarchical design results
in better generalization with a small amount of in-domain data. HAMSTER is able to utilize cheap training sources such as videos
or simulations for enhanced generalization.

5.1 Introduction

Developing general robot manipulation policies has been notoriously di�cult. With the advent of large

vision-language models (VLMs) that display compelling generalization capabilities, there is optimism that

the same recipe is directly applicable to robot manipulation. A line of prior work [36, 165, 32] builds

44



open-world vision-language-action models (VLAs) by �netuning o�-the-shelf pretrained VLMs to directly

produce robot actions. These VLA models, which we refer to in this work as monolithic VLA models, rely

crucially on large robotics datasets, complete with on-robot observations, e.g., images and proprioceptive

states, and actions. However, on-robot data is expensive, since end-to-end observation-action pairs are

typically collected on the robot hardware through, e.g., teleoperation. Despite recent community-wide

e�orts in building large-scale robotics datasets [67, 163], the size, quality, and diversity of existing robotics

datasets are still limited, and monolithic VLA models have yet to demonstrate emergent capability com-

parable to VLMs and LLMs in other domains of study. Moreover, monolithic VLA models are constrained

by their inference frequency to achieve dexterous and dynamic manipulation tasks [36, 165].

On the other hand, relatively small robot policy models have shown impressive dexterity and robust-

ness. Such models have demonstrated promise across a range of complex tasks involving contact-rich

manipulation and 3D reasoning, spanning domains from tabletop manipulation [327, 111, 110, 162] to �ne

dexterous manipulation [57, 411]. Trained on relatively small datasets, these models show local robustness,

and can achieve dexterous and high-precision control. However, they are often brittle to drastic changes in

the environment or semantic description of the tasks [288]. These models also can struggle to e�ectively

leverage simulation data for real-world manipulation tasks due to sim-to-real gaps in visual appearances

and system dynamics [191, 233].

In this work, we ask – how can wemarry the generalization bene�ts of large VLMs, with the e�ciency,

local robustness, and dexterity of small policymodels? Our key insight is that, instead of directly predicting

robot actions, VLMs can be �ne-tuned to produce intermediate representations as high-level guidance on

solving the robot manipulation task. The intermediate representation can then be consumed by the low-

level policy model to produce actions, alleviating the low-level policy from the burden of long-horizon

planning and complex, semantic reasoning. Further, if the intermediate representations are chosen such

that they are 1) easily obtainable from image sequences; 2) largely embodiment agnostic; and 3) su�ciently
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robust to subtle changes in dynamics, the VLM can be �ne-tuned with o�-domain data where robot actions

are unavailable or inaccurate. Such o�-domain data does not need to be collected on the actual robot

hardware. Examples of o�-domain data include action-free video data, simulation data, human videos,

and videos of robot with di�erent embodiments. These o�-domain data are generally easier to collect and

may already be abundant in existing datasets. We hypothesize, and show experimentally in Fig 5.7, that

this hierarchical separation can allow VLA models to more e�ectively bridge the domain gap between

o�-domain data and in-domain robotic manipulation.

To this end, we propose a hierarchical architecture for VLAs, HAMSTER (Hierarchical ActionModels

with SeparaTEd Path Representations), where large �ne-tuned VLMs are connected to low-level policy

models via 2D path representations∗. A 2D path is a coarse trajectory of the 2D image-plane position of the

robot end-e�ector†, as well as where the gripper state changes, i.e., opens and closes (see Fig. 5.2). These

2D paths can be obtained cheaply and automatically from data sources such as action-free videos or physics

simulations, using point tracking [82, 159], hand-sketching [115], or proprioceptive projection. This allows

HAMSTER can e�ectively leverage these abundant and inexpensive o�-domain data when �ne-tuning the

high-level VLM. The hierarchical design presented in HAMSTER also o�ers additional advantages through

the decoupling of VLM training and low-level action prediction. Speci�cally, while the higher-level VLM is

predicting semantically meaningful trajectories frommonocular RGB camera inputs, the lower-level policy

models can additionally operate from rich 3D and proprioceptive inputs. In doing so, HAMSTER inherits

the semantic reasoning bene�ts of VLMs along with the 3D reasoning and spatial awareness bene�ts of

3D policy models [110, 162]. Moreover, the high-level VLM and low-level policy model can be queried at

di�erent frequencies

In summary, we study a family of hierarchical VLA models HAMSTERs, where �netuned VLMs are

connected to low-level 3D policy models [110, 162]. The 2D paths produced by high-level VLMs serve

∗Representations similar to 2D paths has been explored in the robot learning literature [115], primarily as a technique for
�exible task speci�cation. We refer readers to section 5.2 for a detailed discussion.

†For human video, this corresponds to the position of the palm center or �ngertips.
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as guidance for a low-level policy that operates on rich 3D and proprioceptive inputs, allowing low-level

policies to focus on robustly generating precise, spatially-aware actions. In our experiments, we observe

an average of 20% improvement in success rate over seven di�erent axes of generalization over Open-

VLA [165], which amounts to 50% relative gain, as shown in Table C.3. Since HAMSTER is built on both

open-source VLMs and low-level policies, it can serve as a fully open-sourced enabler for the community-

building vision-language-action models. It is important to note that while we are certainly not the �rst

to propose hierarchical VLA models [115, 259], we propose the novel insight that this type of hierarchical

decomposition allows for these models to make use of abundant o�-domain data for improving real-world

control. This opens the door to alternative ways of training large vision-language-action models using

cheaper and more abundant data sources.

5.2 Related Work

LLMs and VLMs for robotics. Early attempts in leveraging LLMs and VLMs for robotics are through

pretrained language [152, 327, 332] and visual [316, 271, 253, 225] representations. However, these are

insu�cient for complex semantic reasoning and generalization to the open world [39, 422]. Recent re-

search has focused on directly leveraging open world reasoning and generalization capability of LLMs and

VLMs, by prompting or �ne-tuning them to, e.g., generate plans [88, 146, 199, 194, 332, 40] or construct

value [145] and reward functions [177, 334, 396, 222, 369]. Our work is more closely related to VLAmodels,

summarized below.

Monolithic VLA models as language-conditioned robot policies. Monolithic VLA models have

been proposed to produce robot actions given task description and image observations directly [39, 154,

422, 347, 165, 292]. Monolithic VLA models are often constructed from VLMs [205, 21, 85, 198], and are

trained on large-scale on-robot data [39, 67, 163] to predict actions as text or special tokens. However,

due to the lack of coverage in existing robotics datasets, they must be �netuned in-domain on expensive
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on-robot data. Their action frequency is also constrained by inference frequency, limiting their capabil-

ity to achieve dexterous and dynamic tasks. The most relevant monolithic VLA model to our work is

LLARVA [266], which predicts end-e�ector trajectories in addition to robot actions. However, LLARVA

only uses trajectory prediction as an auxiliary task to improve the action prediction of a monolithic VLA

model. In contrast, our work takes a hierarchical approach, enabling us to use specialist lower-level policies

that take in additional inputs the VLMs cannot support, such as 3D pointclouds, to enable better imitation

learning. Our predicted paths then enable these lower-level policies to generalize more e�ectively.

VLMs for predicting intermediate representations. Our work bears connections to prior methods

using vision-language models to predict intermediate representations. These methods can be categorized

by the choice of predicted representations:

Point-based predictions: Acommon intermediate prediction interface has been keypoint a�ordances [336,

338, 261, 398, 172]. Keypoint a�ordances can be obtained through using open-vocabulary detectors [243],

iterative prompting of VLMs [261], or �ne-tuning detectors to identify certain parts of an object by seman-

tics [338]. Perhaps most related to our work, [398] �netune a VLM to predict objects of interest as well

as free space for placing an object, and [202] propose a mark-based visual prompting procedure to predict

keypoint a�ordances as well as a �xed number of waypoints. As opposed to these, our work �netunes a

VLM model to not just predict points but rather entire 2D paths, making it more broadly applicable across

robotic tasks.

Trajectory-based predictions: The idea of using trajectory-based task speci�cations to condition

low-level policies was proposed in RT-trajectory [115], largely from the perspective of �exible task spec-

i�cation. This work also brie�y discusses the possibility of combining trajectory-conditioned model with

trajectory sketches generated by a pre-trained VLM. Complementary to RT-Trajectory, the focus of this

work is less on the use of trajectory sketches for task speci�cation, but rather a hierarchical design of VLAs

such that the high-level VLM can be �ne-tuned with relative cheap and abundant data sources. This could
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include data such as action-free videos, or simulation data that look very di�erent from the real world.

We show that the emergent generalization capability of VLMs from its web-scale pretraining allows it

transfer to test scenarios of interest with considerable visual and semantic variations. While RT-trajectory

uses human e�ort or o�-the-shelf pre-trained VLMs to generate trajectories, we show that �ne-tuning

VLMmodels on cheap data sources can generate signi�cantly more accurate and generalizable trajectories

(see Table. C.2). Moreover, our instantiation of this architecture enables the incorporation of rich 3D and

proprioceptive information, as compared to monocular 2D policies [115].

Similarly, the emergence of track-any-point (TAP) models [82, 366] has enabled policies conditioned on

object trajectories [397, 381, 27] or points sampled from a �xed grid in the image [371]. While our current

formulation focuses on end-e�ector trajectories, this framework can naturally extend to predicting object

trajectories or other motion cues. By leveraging the predictive capabilities of VLMs, such an extension

could further enhance the model’s ability to generalize across diverse scenarios and improve its capacity

for �ne-grained motion reasoning.

Leveraging simulation data for training robot policies. There has been extensive work on lever-

aging simulation for robot learning. Simulation data is popular in reinforcement learning (RL), as RL on

real robotic systems is often impractical due to high sample complexity and safety concerns [184, 129,

351]. Recently, simulation has been also exploited to directly generate [101] or bootstrap [231] large-scale

datasets for imitation learning, to reduce the amount of expensive robot teleoperation data needed. Our

work takes a di�erent approach – using simulation data to �netune a VLM, and showing that VLM is

able to transfer the knowledge learned from simulation data to real robot systems, despite considerable

visual di�erences. A related observation is recently made by [398], but they use keypoint a�ordances as

the interface between the VLM and the low-level policy as opposed to more general expressive 2D path

representations.
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5.3 Background

Imitation Learning via Supervised Learning. Imitation learning trains a policy πθ(a | s, o, z) from ex-

pert demonstrations, where s denotes proprioceptive inputs, o includes perceptual observations (e.g., RGB

images, depth), and z provides task instructions. Given an expert dataset D = {(si, oi, zi, ai)}
N
i=1, the

policy is optimized via maximum likelihood estimation, maximizing E(si,oi,zi,ai)∼D [log πθ (ai | si, oi, zi)].

Despite advancements in architectures such as 3D policy representations [111, 162], generalizing to novel

semantic or visual variations remains challenging. In this paper, we explore how VLMs can enhance imi-

tation learning models for better generalization.

Vision-Language Models. VLMs [200, 198, 205] are large transformer models [359] that accept

both vision and text tokens to generate text responses. They are pre-trained on extensive multimodal

datasets [417, 44] and later �ne-tuned on high-quality, task-speci�c data [323, 212]. By tokenizing each

modality into a shared space, these models autoregressively produce sequences of text tokens conditioned

on an image and prior tokens. In our work, we assume access to such a pre-trained, text-and-image

VLM [198, 205], further �ne-tuned via a supervised loss that minimizes the negative log-likelihood of

the target tokens.

5.4 HAMSTER: Hierarchical Action Models for Robotic Learning

In this work, we examine how VLA models can leverage relatively abundant data and demonstrate cross-

domain transfer capabilities, as opposed to relying purely on expensive observation-language-action data

collected on a robot. HAMSTER is a family of hierarchical VLA models designed for this purpose, exhibit-

ing generalizable and robust manipulation. It consists of two interconnected models: �rst, a higher-level

VLM that is �netuned on large-scale, o�-domain data to produce intermediate 2D path guidance (detailed
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(b) Low-Level Action Execution

Figure 5.2: Depiction of HAMSTER’s execution. The high-level VLM is called once to generate the 2D path. The low-level
policy is conditioned on the 2D path and interacts with the environment sequentially to execute low-level actions. The path
predicted by the VLM enhances the low-level policy generalization capability.

in Section 5.4.1), and second, a low-level policy that produces actions conditioned on 2D paths (detailed in

Section 5.4.2).

The primary advantages of �netuning such a hierarchical VLM that produces intermediate representa-

tions as opposed to directly producing actions awith a monolithic model [165, 422, 32] are threefold: 1) our

hierarchical VLM can leverage o�-domain datasets lack of precise actions, e.g., simulation and videos; 2)we

�nd empirically that hierarchical VLMs producing 2D paths generalize more e�ectively cross-domain than

monolithic VLA models; and 3) the hierarchical design provides more �exibility on the sensory modality,

and allows for asynchronous query of large high-level VLA models and small low-level policy models.

5.4.1 HAMSTER’s VLM for producing 2D Paths Trained from O�-Domain Data

The high-level VLM of HAMSTER predicts a coarse 2D path p to achieve the task given a monocular

RGB image img and language instruction z, i.e., p̂ ∼ VLM(img, z). The 2D path p describes a coarse

trajectory of the robot end-e�ector, or human hand in the case of human videos, on the input camera

image. It also contains information about the gripper state. Formally, the 2D path is de�ned as p =

[(xt, yt, gripper_opent)]t where xt, yt ∈ [0, 1] are normalized pixel locations of the end e�ector’s (or

hand) position at step t, and gripper_opent is a binary value indicating the gripper state, i.e., open and

close.
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Figure 5.3: O� Domain Training Data: Do� contains (a) Pixel Point Prediction: 770k object location tasks from RoboPoint.
(b) Simulated Robot Data: 320k 2D end-e�ector paths from RLBench environment. (c) Real Robot Data: 110k 2D end-e�ector
paths from Bridge and DROID trajectories.

Although, any pretrained text-and-image-input VLM [198, 205, 3] can be used to predict such a 2D path

by casting an appropriate prompt, we �nd that pre-trained VLMs struggle with predicting such a path in a

zero-shot manner (see Table C.2). Therefore, we �netune pre-trained VLMs on datasets that ground VLMs

to robot scenes and path predictions collected from easier-to-obtain sources, i.e., internet visual-question-

answering data, robot data from other modalities, and simulation data. This is in contrast to work such as

[115], where pre-trained VLMs are tasked with directly performing spatially relevant path generation.

We use VILA-1.5-13b [198] as our base VLM, a 13-billion-parameter vision language model trained on

interleaved image-text datasets and video captioning data. Although it is possible to curate a dataset on

path prediction {(imgi, zi, pi)}i and train the VLM only on the dataset, the literature [36, 398] has shown

that co-training the VLM on a variety of relevant tasks, all framed as VQA tasks, can help retain the VLM’s

generalization capability. To this end, we curate a multi-domain dataset to �netune this model for e�ective

2D path prediction.

5.4.1.1 Finetuning Objective and Datasets.

Predicting the 2D path of the end-e�ector requires understanding what objects to manipulate in a given

task in terms of their pixel positions, but also reasoning about how a robot should perform the task. To

enable this understanding, we collate a diverse o�-domain dataset Do� from a wide range of modalities,

including real-world data, visual question-answering data, and simulation data. Importantly, none of this
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o�-domain data used to train the VLM comes from the deployment environment, thereby emphasizing

generalizability.

We assemble a dataset Do� = {(imgi, zi, ansi)}
M
i=1 of image inputs imgi, language prompts zi, and

answer ansi consisting of three types of o�-domain data: (1) pixel point prediction tasks (what); (2) sim-

ulated robotics tasks (what and how); (3) a real robot dataset consisting of trajectories (what and how).

We detail each dataset below; see Figure 5.3 for visualization of each dataset’s prompts and corresponding

answers.

Pixel Point Prediction. For pixel point prediction, we use the RoboPoint dataset [398] with 770k pixel

point prediction tasks, with most answers represented as a list of 2D points corresponding to locations on

the image. A sample consists of a prompt z like Locate object between the marked items, an input

image img and answer ans like [(0.25, 0.11), (0.22, 0.19), (0.53, 0.23)].‡ See the left of Figure 5.3 for an

example. This dataset consists of data automatically generated in simulation and collected from existing

real-world datasets; its diverse tasks enable the HAMSTER VLM to reason about pixel-object relationships

across diverse scenes while retaining its semantic generalization capabilities.

Simulated Robot Data. We additionally generate a dataset of simulated robotics tasks from RL-

Bench [149], a simulator of a Franka robot performing tabletop manipulation for a wide array of both

prehensile and non-prehensile tasks. We use the simulator’s built-in planning algorithms to automati-

cally generate successful manipulation trajectories. Given a trajectory, we use the �rst frame from the

front camera as the image input img. We construct prompt z to instruct the VLM to provide a sequence

of points denoting the trajectory of the robot gripper to achieve the given language instruction (see Fig-

ure 5.2). The ground-truth 2D path p = [(xt, yt, gripper_opent)]t is given by propriceptive projection

using forward kinematics and camera parameters.

‡Note that this is not a temporally ordered path, but rather a set of unordered points of interest in an image.
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We generate 1000 episodes for each of 81 robot manipulation tasks in RLBench, each episode with∼4

language instructions, for a total of around 320k (img, z, ans) tuples, where ans = p. See the middle of

Figure 5.3 for an example.

Real Robot Data. Using real robot data allows us to ensure the VLM can reason about objects and

robot gripper paths when conditioned on scenes, including real robot arms. We use existing, online robot

datasets not from the deployment environment to enable this VLM ability. We source 10k trajectories from

the Bridge dataset [362, 67] consisting of aWidowX arm (di�erent embodiment from test robot) performing

manipulation tasks and around 45k trajectories fromDROID [163]. We covert both datasets to VQA dataset

in as similar way as the simulated RL-Bench data, where the 2D paths are extracted from proprioception

and camera parameters (see the right of Figure 5.3 for an example). Note that we essentially utilize the

robot data as video data, where the end e�ector is tracked over time. In principle, this could be done with

any number of point-tracking methods [82] on raw video as well, with no action or proprioceptive labels.

We �netune the HAMSTER VLM on all three types of data by randomly sampling from all samples

in the entire dataset with equal weight. We also include a 660k-sample VQA dataset [204] for co-training

to preserve world knowledge. We train with the standardized supervised prediction loss to maximize the

log-likelihood of the answers ans: E(imgi,zi,ansi)∼Do�
logVLM (ansi | imgi, zi).

Remark. One issue with simulation and real robot data is that the extracted 2D paths p can be ex-

tremely long, e.g., exceeding one hundred steps. Since we want the HAMSTER VLM to reason at a high

level instead of on the same scale as the low-level control policy, we simplify the paths po with the Ramer-

Douglas-Peucker algorithm [295, 83] that reduces curves composed of line segments to similar curves

composed of fewer points. We refer readers to Appendix C.7 for an ablation study.
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5.4.2 Path Guided Low-Level Policy Learning

The low-level policy of HAMSTER πθ(a | s, o, z, p) is conditioned on proprioceptive and perceptive ob-

servations, (optional) language instruction and, importantly, 2D path. While a low-level control policy can

learn to solve the task without 2D path, the paths allow the low-level policy to forgo long-horizon and

semantic reasoning and focus on local and geometric predictions to produce robot actions. As we �nd

empirically (see Figure 5.4), 2D paths allow for considerably improved visual and semantic generalization

of low-level policies.

HAMSTER’s general path-conditioning framework allows lower-level policies to take in propriocep-

tive and perceptual (e.g., depth images) observations, that are not input to the high-level VLM. We con-

sider low-level policies based on 3D perceptual information, i.e., o = (img, pointcloud), available at test

time on a robotic platform with standard depth cameras. We study two choices of policy architecture,

RVT-2 [110] and 3D-DA [162] which has shown state-of-the-art results on popular robot manipulation

benchmark [149].

Conditioning on Paths. Most policy architectures use the form πθ(a | s, o, z) without 2D path

inputs. One naïve option is to concatenate the path with proprioceptive or language inputs. However,

because 2D paths vary in length, the architecture must handle variable-length inputs. To incorporate the

2D path p̂ from the VLMwithout major modi�cations, we alternatively overlay the 2D path onto the image

observation [115]. Our implementation follows this approach by drawing colored trajectories on all images

in the trajectory o1i , . . . , o
T
i : points at each (xt, yt) are connected with line segments using a color gradient

to indicate temporal progression (see Figure 5.2(b)), and circles mark changes in gripper status (e.g., green

for closing, blue for opening). If the policy architecture allows images with more than three channels,

we can also include path drawing as separate channels, instead of overlaying it on the RGB channel. We

empirically study both drawing strategies, overlay and concatenating channels, in section 5.5.3.
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Policy Training. To train the policy, we collect a relatively small-scale task-speci�c dataset D =

{(si, oi, zi, ai)}
N
i=1 on the robot hardware. During training, we use oracle 2D paths constructed by propri-

oception projection, similar to how the 2D paths are constructed for the VLM training data, and construct

path-labeled dataset Dpath = {(si, oi, zi, pi, ai)}
N
i=1. We train a policy πθ(a | s, o, z, p) with standard

supervised imitation learning objectives on Dpath to maximize the log-likelihood of the dataset actions:

E(si,oi,zi,pi,ai)∼Dpath
log πθ(ai | si, oi, zi, pi). For further implementation details, see Appendix C.2.

Inference Speed. Monolithic VLAs query the VLM at every action step [165, 36], which can be very

expensive with large VLMs. For example, OpenVLA’s 7B-parameter VLA only runs at 6Hz on an RTX

4090 [165]. Instead, HAMSTER’s hierarchical design allows us to query the VLM only one or few times

during an episode to generate 2D paths p̂ that can be followed by low-level policy for multiple steps.

Therefore, HAMSTER can be scaled to large VLM backbones without needing end-users to be concerned

about inference speed.

5.5 Experimental Evaluation

We evaluate our approach in both simulation and real-world experiments to the following key questions.

Do hierarchical VLAs:

Q1 Generalize behaviors to unseen scenarios with signi�cant visual and semantic variation?

Q2 Achieve stronger cross-domain generalization than monolithic architectures?

Q3 Facilitate learning of non-prehensile and long-horizon tasks?

Q4 Exhibit strong demonstration e�ciency?

Q5 Have improved visual + semantic reasoning due to hierarchy and VLM �ne-tuning?
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pick up the green pepper 

and put it in  

the red bowl
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push down the 
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Figure 5.4: Depiction of quantitative real-world policy execution results on a real-world robot, evaluated across di�erent axes
of generalization and across both prehensile and non-prehensile tasks. Across all generalization axes, HAMSTER outperforms
monolithic VLAs and the base 3D imitation learning policies.

5.5.1 Real World Evaluation on Tabletop Manipulation

To answer Q1, our real-world evaluation experiments aim to test the generalization capability of hierar-

chical VLA models across signi�cant semantic and visual variations. In particular, we consider a variant

of HAMSTER that uses a VLM (VILA-1.5-13b [198]) �netuned on the data mixture in Section 5.4.1 as the

high-level predictor, with two low-level 3D policy architectures - RVT-2 [110] and 3D Di�user Actor (3D-

DA) [162] as choices of the low-level policy, as described in Section 5.4.2. The low-level 3D policies are

trained with 320 episodes collected via teleoperation shown in Fig. 5.3. Importantly, the high-level VLM

has not seen any in-domain data and is only �netuned on the o�-domain data described in Section 5.4.1.

This suggests that any generalization that the VLM shows result from cross-domain transfer.

Baseline comparisons. To answer Q2, we compare HAMSTER with a state-of-the-art monolithic

VLA, OpenVLA [165] as well as non-VLM 3D policies, RVT-2 [110] and 3D-DA [162]. For fair comparison,

we �netune OpenVLA on the collected in-domain data described above since OpenVLA showed poor zero-

shot generalization. The 3D policy (RVT-2, 3D-DA) baselines are trained with the same teleoperation data

used to train the low-level policy in HAMSTER but without the intermediate 2D path representation from

HAMSTER’s VLM.
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Finetuning OpenVLA with RLBench. To ensure our method’s advantage over OpenVLA [165] is

not solely due to RLBench data, we �ne-tuned OpenVLA on the same RLBench dataset used for HAM-

STER’s VLM—1,000 episodes per task across 81 tasks (using only episodes with good front-camera visibil-

ity)—until achieving over 90% token accuracy [165]. We then �ne-tuned this model on our tasks following

the procedure in Appendix C.3.2. In real-world pick-and-place experiments (6 trials over 6 “Basic” tasks

as shown in Table C.1), RLBench-�netuned OpenVLA averaged a success score of 0.54 versus 0.58 for the

model without RLBench �ne-tuning. This suggests that monolithic VLA architectures like OpenVLA gain

little bene�t from RLBench data, likely due to mismatches in action and observation spaces relative to the

real-world setup.

Quantitative Results. Figure 5.4 summarizes our real-world results. To answer Q3, we evaluate

across multiple task types, including ‘pick and place,’ and nonprehensile tasks such as ‘press buttons’

and ‘knock down objects.’ We also test generalization across various axes (Q1) – obj and goal: unseen

object-goal combinations; visual: visual changes in table texture, lighting, distractor objects; language:

unseen language instructions (e.g., candy→ sweet object); spatial: unseen spatial object relationships in

the instruction; novel object: unseen objects; and lastly, multiple: a combination of multiple variations. In

total, we evaluate each model on 74 tasks for 222 total evaluations. Detailed results and the success score

metric are provided in Appendix Table C.1.

Qualitative Eval on Various Tasks. In addition to the quantitative evaluation conducted for com-

parison with OpenVLA, we also present qualitative results that demonstrate howHAMSTER’s hierarchical

structure enables low-level policy models to generalize to more complex tasks. Figure C.1 illustrates the

diverse tasks HAMSTER can handle, including unfolding a towel, opening and closing drawers, pressing

buttons, wiping surfaces, and cleaning tables. These tasks present challenges such as varying lighting
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Figure 5.5: Example real-world HAMSTER rollouts demonstrate its strong performance in novel scenes achieved by leveraging
VLMs’ generalization capabilities and the robust execution of low-level 3D policies.

conditions, cluttered backgrounds, and semantic understanding requiring external world knowledge. Ad-

ditionally, HAMSTER demonstrates the ability to perform long-horizon tasks—none of which are part of

the in-domain training set used to train the policy model.

Overall, we �nd that HAMSTER signi�cantly outperforms monolithic VLA models and (non-VLM) 3D

policies by over 2x and 3x, respectively, on average. This is signi�cant because this improved performance

is in the face of considerable visual and semantic changes in the test setting, showing the ability of HAM-

STER to generalize better than monolithic VLAmodels or non-VLM base models. We further group results

by task type in Table C.3, where we see HAMSTER outperforms OpenVLA across all task types (pick and

place, press button, and knock down). See Appendix C.3 for evaluation conditions, a task list, and other

experiment details, and Appendix C.5 for failure modes.

5.5.2 Simulation Evaluation

Overall Results. For further investigation into Q1, Q2, and Q3, we conducted a controlled simulation

evaluation using Colosseum [288], which provides signi�cant visual and semantic variations across pick-

place and non-prehensile tasks. Pairing our high-level VLM with the state-of-the-art 3D-DA [162] policy
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Method Success

3D-DA 0.18 ± 0.10
HAMSTER+3D-DA (50%) 0.36 ± 0.04
HAMSTER+3D-DA 0.43 ± 0.05

Table 5.1: Results on Colosseum demonstrate that
HAMSTER is data e�cient, achieving 2X the suc-
cess score of 3D-DA with just 50% of the data.

Method Original Camera Novel Camera

Success Complete Success Complete

OpenVLA 0.60 0.30 0.23 0.00
HAMSTER+RVT2 0.83 0.70 0.73 0.40
HAMSTER+RVT2 (Concat) 1.00 1.00 0.98 0.90

Table 5.2: Real world results demonstrate HAMSTER generalizes to bet-
ter to novel camera views (see Fig.Figure 5.6). We ran 10 trails and report
averaged success rates.

Avg. no var bac tex cam pos distractor lig col man obj col man obj siz

3D-DA[ Ke, Gkanatsios, and Fragkiadaki] 0.35± 0.04 0.43± 0.06 0.34± 0.07 0.35± 0.11 0.39± 0.11 0.44± 0.13 0.41± 0.04 0.41± 0.11
HAMSTER (w 3D-DA) 0.46± 0.04 0.57± 0.03 0.48± 0.08 0.39± 0.06 0.41± 0.05 0.59± 0.04 0.57± 0.08 0.51± 0.10

man obj tex rec obj col rec obj siz rec obj tex rlb and col rlb var tab col tab tex

3D-DA[ Ke, Gkanatsios, and Fragkiadaki] 0.27± 0.04 0.34± 0.10 0.36± 0.05 0.36± 0.12 0.07± 0.03 0.45± 0.12 0.42± 0.06 0.23± 0.04
HAMSTER (w 3D-DA) 0.48± 0.06 0.48± 0.05 0.40± 0.05 0.56± 0.09 0.11± 0.10 0.58± 0.04 0.56± 0.03 0.35± 0.07

Table 5.3: Simulation evaluation of HAMSTER across di�erent visual variations. We test vanilla 3D Di�user Actor and HAM-
STER across variations in Colosseum [288]. Avg. indicates mean across variations, including no variation.

on RLBench, we compared HAMSTER against a vanilla 3D-DA implementation without path guidance.

As shown in Table 5.3 over 5 seeds, HAMSTER outperforms the vanilla approach by an average of 31%.

This improvement stems from training with path-drawn images, which encourages the policy to focus on

the path rather than extraneous visual features, thereby enhancing robustness to visual variations. We

refer readers to Pumacay et al. [288] for details on the variations and Appendix C.6 for further simulation

experiment details.

HAMSTERwith Fewer Demonstrations. We also test HAMSTER’s ability to work well with limited

demonstrations to answer Q4. We test on a subset of 5 Colosseum tasks, namely, slide_block_to_tar-

get, place_wine_at_rack_location, insert_onto_sqare_peg, stack_cups, setup_chess. Results in

Table 5.1 demonstrate that HAMSTER+3D-DAwith just 50% of the data still achieves 2x the success rate of

standard 3D-DA, demonstrating that HAMSTER is demonstration-e�cient for the downstream imitation

learning tasks.

5.5.3 VLM Generalization Studies

Finally, we answer Q5: can HAMSTER’s hierarchy enable superior visual and semantic reasoning?
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Figure 5.6: Camera
pos. for view invari-
ance: old (right) and
new (left).

Camera View Invariance. We test HAMSTER+RVT2 against OpenVLA from a

new camera angle (Figure 5.6) across 10 pick-and-place trials using 6 training objects

and 3 training containers to check HAMSTER’s visual spatial reasoning. The results

in Table 5.2 show that HAMSTER signi�cantly outperforms OpenVLA and remains

robust to new camera angles, bene�ting from its VLM trained on diverse o�-domain

tasks across various viewpoints. Additionally, we compare HAMSTER+RVT2 (Con-

cat), where instead of overlaying the path on the input RGB image, we modify RVT-2 to accept a 6-channel

input by concatenating the original RGB imagewith a separate RGB image containing only the drawn path.

We can easily apply this due to HAMSTER’s hierarchical nature. Concatenated paths actually achieve the

best performance, demonstrating the e�ectiveness of this path representation, though it is less general

and not compatible with all imitation learning policy architectures (such as 3D-DA as it uses a pre-trained

image encoder expecting 3 input channels). One possible explanation is that RVT2’s virtual reprojection

can fragment the 2D path when it is directly drawn on the image, making it harder for RVT2 to decode.

By providing a dedicated path channel (via concatenation), path guidance is preserved more e�ectively.

VLMGeneralization. We further demonstrate the bene�t of HAMSTER’s hierarchy by demonstrating

that the VLM generalizes well to visually unique and semantically challenging tasks due to its o�-domain

�ne-tuning. We visualize example HAMSTER path drawings in Figure 5.7, demonstrating HAMSTER’s

VLM itself e�ectively reasons semantically and visually for unseen tasks. We further investigate VLM

performance in Appendix C.4.1, where we �nd that (1) HAMSTER outperforms zero-shot path generation

from closed-source VLMs [115, 194] and (2) that inclusion of simulation data improves HAMSTER’s real-

world performance. Both results point to the bene�t of explicit hierarchy: o�-domain VLM �ne-tuning

that improves its performance. See Appendix C.4.1 for further details.
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Move the toy car 

to the bowl with x

Place the cup on 

the cup holder

Move the left block to 

Jensen Huang

Screw the light bulb in 

the lamp

Push the button with color of cucumber, 

then press the button with color of fire

(a) (b) (c)

Figure 5.7: HAMSTER’s VLM demonstrates strong generalization to unseen scenarios. From left to right: (a) leveraging world
knowledge for user-speci�ed tasks, (b) handling out-of-domain inputs like human-drawn sketches, and (c) transferring from
diverse simulations to visually distinct real-world tasks. Blue-to-red lines indicate motion, with blue and red circles marking
grasp and release points, respectively.

5.6 Conclusion and Limitations

In summary, we study hierarchical VLAmodels that achieve robust generalization in robotic manipulation.

We introduce HAMSTER, consisting of a �netuned VLM that accurately predicts 2D paths and a low-

level policy that learns to generate actions using the 2D paths. This two-step architecture enables visual

generalization and semantic reasoning across considerable domain shifts while enabling specialist policies,

like ones conditioned on 3D inputs, to execute low-level actions.

This work represents an initial step towards developing versatile, hierarchical VLA methods. The

proposed work only generates points in 2D space, without making native 3D predictions. This prevents

the VLM from having true spatial 3D understanding. Moreover, the interface of just using 2D paths is

a bandwidth limited one, which cannot communicate nuances such as force or rotation. In the future,

investigating learnable intermediate interfaces is a promising direction. Moreover, training these VLMs

directly from large-scale human video datasets would also be promising.
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Part II

Adapting to New Scenes and Tasks with Human Guidance
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Chapter 6

TAIL: Task-speci�c Adapters for Imitation Learning with Large

Pretrained Models

6.1 Introduction

A desired property of an autonomous agent is the ability to adapt e�ciently to novel tasks. In vision and

language domains, large pretrained models have demonstrated adaptation to new tasks with just a few

examples through prior knowledge obtained from internet-scale datasets [42, 289, 352]. Similar methods

have also been applied in decision-making and control applications [39, 84, 36]. However, new control

tasks are more di�cult to adapt to than the aforementioned vision and language domains due to (1) the

lack of internet-scale control data and (2) how optimal actions can vary signi�cantly from task-to-task,

even under shared observation spaces. As such, these large-scale decision-making models still rely on a

close alignment between training and testing tasks.

In contrast, agents deployed in challenging environments need to adapt to major task variations—take,

for example, a general household robot. Equipped with a factory-pretrained policy, the robot will be em-

ployed in unique ways by every household. Thus, the robot will need to continually adapt in order to best

serve each one, e.g., by �ne-tuning its capabilities on a few demonstrations [49, 213, 157, 52, 389]. Because

most prior decision-making papers adapt to new tasks by �ne-tuning the entire model [119, 33, 404, 407,
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Figure 6.1: (a): The multi-modal, transformer policy architecture we utilize for pretraining. We encode language
task descriptions with a pretrained CLIP instruction encoder and image observations with a pretrained CLIP spatial
encoder. We additionally encode state observations (not pictured) which, along with the observation embeddings,
are embedded into a sequence of tokens used by the temporal decoder transformer to predict single-step action
distributions. We include an input fusion module to explicitly combine the task embedding with the observation
token sequence for better instruction-following ability. (b): The three types of �ne-tuning paradigms we test, with
TAIL at the bottom right. For further architecture details, see Appendix Sec. D.1.

67, 209], mastering each new skill requires great computational cost and often leads to catastrophic forget-

ting of old ones. An alternative approach would be to store a separate policy per new task, which leads to

unreasonable storage requirements. Some prior work investigates e�cient adaptation of large models to a

single task suite [193, 310, 322], but this realistic continual learning setting brings out additional problems

to consider, warranting further investigation. What would be the best way for agents to e�ciently adapt to

a stream of novel tasks without having to trade o� computation, storage, and performance on older tasks?

To answer this question, we propose Task-speci�c Adapters for Imitation Learning, shown in Fig. 6.1,

a framework for e�cient adaptation to new control tasks. Through TAIL we (1) e�ectively incorporate

lightweight adapter modules into pretrained decision-making models and (2) comprehensively compare

e�cient adaptation techniques implemented in TAIL in a continual imitation learning setting. Notably, we

examine parameter-e�cient adaptation techniques (PEFT) used for large language models; we explore the

potential of adapters [140], pre�x tuning [190], and low-rank adaptation (LoRA) [141] in fostering e�cient

and continual adaptation in large pretrained decision-making models. These works stand out as they

introduce a small number of new parameters which help: avoid catastrophic forgetting, maintain training
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plasticity for continual learning, avoid over�tting with limited adaptation data, and reduce computational

and memory burden. Investigating these works in control tasks for a realistic continual learning setup

speci�cally is important because, unlike in language domains, test task losses are often not proportional

to test task performance [302, 161]—e�cient adaptation insights from language models may not transfer

to decision-making ones. Thus, independent investigation of these adaptation techniques for decision-

making is crucial for deploying continually adapting agents in the real world.

We compare PEFT techniques implemented in TAIL against commonly used adaptation methods in

the imitation learning literature. In our experiments, we discover that TAIL with LoRA leads to the best

post-adaptation performance as it preserves the original pretrained representations while being resilient

against over�tting in the limited-data regime. These capabilities are especially important for agents op-

erating in new, challenging environments, such as the aforementioned household robots. Our analysis

also reveals important insights into the strengths and limitations of each adaptation strategy. Instead of

performing full �ne-tuning of the entire model, TAIL only introduces a small number of additional pa-

rameters without making changes to the original model. These additional parameters make up a mere

1.17% of the size of the original model. Importantly, this results in approximately 23% less GPU memory

consumption to achieve 22% higher forward adaptation success rate than full �ne-tuning while avoiding

catastrophic forgetting. Notably, these results are contrary to many results from the vision and language

model literature which show that full �ne-tuning works better [132, 235, 55, 310].

In summary, this work bridges a crucial gap in research into e�cient and continual adaptation for pre-

trained decisionmodels by introducing a framework for continual imitation learning, TAIL, and thoroughly

analyzing the e�ects of di�erent e�cient adaptation methods. Comprehensive experiments demonstrate

that TAIL outperforms standard continual learning and prior single-task adaptation baselines.
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6.2 Related Work

Pretrained Models for Control. Researchers have long studied the use of pretrained models for better

downstream transfer to related tasks [34, 308, 81]. Recent works have examined using the representations

learned by pretrained visual models for control [326, 252, 226, 221, 228]. These methods leverage rep-

resentations acquired from large task-agnostic datasets, such as Ego4D [112], or through self-supervised

objectives. However, there’s evidence that simply utilizing these pretrained features may not be as use-

ful for downstream task performance [130]. Meanwhile, another recent line of work directly trains large

pretrained models for control [39, 297, 84, 154, 36, 33]. These methods either do not attempt adaptation

to new tasks, or perform expensive full-�ne-tuning for adaptation. In contrast, our method, TAIL, is a

framework for e�cient adaptation of decision-making models, like the aforementioned large pretrained

control models, and investigates ways to adapt such models e�ciently to multiple new tasks.

Parameter-E�cient Fine-Tuning (PEFT). PEFT has gained traction as a way to adapt pretrained

models without signi�cantly increasing parameters. Rebu�, Vedaldi, and Bilen [296] demonstrated that

residual adapters for smaller, CNN-based vision models are e�ective in non-control supervised learn-

ing settings. More recently, transformer-focused techniques such as transformer adapter modules [140],

LoRA [141], and prompt tuning [190] incorporate lightweight modules or prompts optimized for down-

stream tasks, all while preserving the original model weights. PEFT o�ers several advantages over full

�ne-tuning: it’s faster, less susceptible to over�tting, retains prior capabilities, and facilitates e�cient

task-switching. While PEFT has been successful in both language and vision domains [55, 310], its contin-

uous adaptation for large decision-making models is not yet thoroughly examined. Liang et al. [193] and

Sharma et al. [322], Xu et al. [383], and Xu et al. [382] propose the use of adapters, prompt-tuning, and

hyper-network in robotics settings, but they do not examine other PEFT methods and focus on adaptation

to a single task suite. We instead examine the performance of various state-of-the-art PEFT techniques

implemented with TAIL in the continual learning scenario.
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Continual Learning. Continual learning in control [350, 236, 103] is a long-studied problem with

applications to many real-world situations. In general, agents should be able to transfer knowledge (e.g., by

continually �ne-tuning) or experience (e.g., training data) from previously learned tasks to new tasks [211,

353, 96, 46]. However, with large pretrained models trained on large datasets, �ne-tuning the entire model

is computationally costly yet risks catastrophic forgetting, and transferring training data from other tasks

is too memory ine�cient in the face of a large stream of new tasks. Therefore, we present a study into

e�cient �ne-tuning techniques which, when integrated with TAIL, can help inform future research of

continual learning.

6.3 Preliminaries

In this section, we introduce our problem setting (Sec. 6.3.1), review large, pretrained models for decision-

making (Sec. 6.3.2), and discuss traditional adaptation methods in this area (Sec. 6.3.3).

6.3.1 Continual Imitation Learning

The agent encounters a sequence of K tasks, denoted as {T1, . . . , TK}. Each task Tk = (µ0
k, gk) is char-

acterized by an initial state distribution µ0
k and a goal predicate gk. Goals for tasks can be speci�ed using

language instructions, providing clear context [151, 404]. For every task Tk, the agent receives N demon-

stration trajectories Dk = {τ1k , . . . , τ
N
k }. In this paper, we use the standard behavioral cloning loss to

optimize the agent’s policy π over these demonstrations, however we note that TAIL can be used with

other training objectives as well:

θ̂ = min
θ

K∑

k=1

E
st,at∼Dk

[
lk∑

t=0

L
(
π(a|s≤t, Tk;θ), a

t
k

)

]

. (6.1)
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Here, L is a supervised action prediction (e.g., mean squared error or negative log likelihood) loss, lk is the

length of demonstrations for task Tk, and θ refers to the learnable parameters of the network. Notably, after

learning task Tk, the agent cannot access additional data from preceding tasks. This presents a continual

learning challenge, emphasizing the importance of transferring knowledge across tasks without the risk

of catastrophic forgetting [236].

6.3.2 Pretrained Decision-Making Models

Here, we brie�y describe common features of large pretrained decision-making model architectures used

for embodied agents. We incorporate key components shared amongst these models into the architecture

of the model that we pretrain to evaluate e�cient adaptation, pictured in Fig. 6.1(a).

Transformer Backbone. Most recent work training large-scale decision-making models [39, 314, 36]

utilize a transformer backbone [358] that attends to tokenized observations from prior timesteps. We

adopt a standard GPT-2 [290] transformer decoder (Fig. 6.1(a), temporal decoder) with separate encoders

for each input modality and continuous action distribution outputs.

Pretrained Input Encoders. Encoders pretrained on large, diverse datasets can produce rich, well-

structured embeddings which make it easier to learn the downstream tasks [151, 39]. Therefore, we utilize

pretrained CLIP image and textual encoders [289].

Input Modality Fusion. The idea of explicitly “fusing” di�erent input modalities has seen great

success not only in domains like vision and language [280], but also in agent learning [151, 39]. Similarly,

we utilize FiLM layers [280] (Fig. 6.1(a), input fusion module) to fuse language task speci�cations with

observations.
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6.3.3 Adapting pretrained models for new tasks

One standard adaptationmethod in prior research is full �ne-tuning (FFT) of all model parameters (Fig 6.1(b),

top left). Though straightforward, it is resource-intensive and prone to over�tting with limited data [33].

There is also a risk of distorting pretrained features, resulting in the loss of prior tasks—a phenomenon

known as catastrophic forgetting [236]. Evidence also suggests that extensive �ne-tuning might under-

mine a model’s rapid adaptability to new tasks, an e�ect referred to as the loss of model plasticity and

capacity [173, 215, 176]. Such issues become more prominent in continual learning contexts [211]. More-

over, duplicating a sizable model for each subsequent task is neither e�cient nor practical due to storage

limitations.

Another standard adaptation method is the use of frozen pretrained features (FPF, Fig 6.1(b) top right).

FPF ensures the retention of knowledge acquired from previous tasks by tuning a task-speci�c head. How-

ever, as noted in Sharma et al. [322], it is not expressive enough for out-of-distribution or especially com-

plex tasks. Given these challenges, there’s a clear need for a more advanced �ne-tuning paradigm that

addresses catastrophic forgetting while maintaining model plasticity for adapting to new tasks, all in a

data and computationally resource-e�cient manner.

6.4 Task-speci�c adapters for imitation learning

In this section, we outline how we perform e�cient adaptation on pretrained models through our Task-

speci�c Adapters for Imitation Learning framework, depicted in Fig 6.1(b). Di�erent from the FPF ap-

proach which simply substitutes the policy head for every new task, TAIL introduces a small set of new

weights, serving as a lightweight plugin to address speci�c tasks. This concept draws inspiration from

parameter-e�cient adaptation techniques prevalent in the language model area. These methods o�er sev-

eral advantages as they: (1) add a few parameters (typically between 0.1% ∼ 2%) to preserve the original
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Figure 6.2: Demonstration of three weight integration styles of TAIL for a Transformer block: sequential
(bottleneck adapter), parallel (LoRA), and pre�x token (pre�x/prompt-tuning).

features, thereby enhancing model plasticity for continual learning and avoiding catastrophic forgetting

[176], (2) are resilient to over�tting when adaptation data is scarce, (3) are more computationally and

storage-e�cient than FFT.

Next, we delve into three prominent weight integration techniques for Transformer-based pretrained

models in Sec. 6.4.1, followed by a case study illustrating the application of this framework in continual

imitation learning scenarios in Sec. 6.4.2.

6.4.1 Adapter Weights Integration

The concept of an adapter can be best conceptualized as a modular plugin to the base model, customized

for speci�c downstream tasks, that does not a�ect the model’s pretrained representations. We mainly

explore three prevalent styles of integration for TAIL: Parallel [141], Sequential [140, 322], and Pre�x

Token [190, 186, 207], all of which are showcased with a Transformer block in Fig. 6.2. Parallel and

sequential integration techniques are generally applicable to any model with feedforward layers, while

the pre�x token style method is especially tailored for Transformers.

71



Given a pretrained model, let’s consider one layer weight matrix in it, denoted asW ∈ R
d×k. Its input

and output hidden states are hin ∈ R
d and hout ∈ R

k, respectively. We have hout = W
⊤hin. Next, we

detail how to apply parallel and sequential insertions to the pretrained weight matrix.

Parallel Integration (LoRA). This integration method, often associated with Low-Rank Adaptation

(LoRA) [141], introduces trainable low-rank matrices Wdown ∈ R
d×r and Wup ∈ R

r×k. Here, r ≪

min(d, k) represents the rank and is usually much smaller than the dimensions of the original matrix.

These matrices are typically integrated in parallel with the original weight matrixW through addition, as

shown as LoRA in Fig. 6.2:

hout = W
⊤hin + αW⊤

upW
⊤
downhin, (6.2)

with α being a hyperparameter to modulate task-speci�c adjustments. The above equation can also be

formulated as: hout = (W + αWdownWup)
⊤hin = (W + α∆W )⊤hin, where ∆W denotes the weight

modi�cations for new tasks, and thus the columns of Wdown and Wup can be interpreted as a new basis

that contains task-speci�c knowledge. As observed by Aghajanyan, Zettlemoyer, and Gupta [6], despite

projecting to a condensed subspace with small "intrinsic dimensions," pretrained models can still learn

e�ectively. By introducing the two low-rank matrices, the original weight matrices W can be adeptly

tailored with a minimal increase in parameters. Though LoRA was originally crafted for large language

models—speci�cally for the query and value projections matrices WQ and WV in multi-head attention

[141]—it is easily applied to other linear layers as well, such as the Transformer’s feedforward layers [55].

Sequential Integration (BottleneckAdapter). Renowned in the languagemodel domain, the Bottle-

neck Adapter introduces bottleneck layers within the model [140, 322] by appending a trainable bottleneck

layer after the feedforward network in each Transformer layer. Similar to LoRA, this bottleneck consists

of down and up projections, Wdown and Wup, which �rst shrink then restore the dimensions of token
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hidden states. Formally, for the feedforward network’s input hin and a bottleneck size r, the output hout

is:

hout = W
⊤
upϕ

(

W
⊤
down(W

⊤hin)
)

, (6.3)

where ϕ denotes a nonlinear activation function. The Bottleneck Adapter (Fig. 6.2) acts as a �lter, isolating

relevant information for speci�c tasks. Yet, �ltering often requires a larger bottleneck size compared to that

of LoRA, leading to more parameters. Additionally, the sequential insertion can increase latency compared

to the parallel nature of LoRA [141].

Pre�x Token Integration (Pre�x & Prompt-Tuning). In this style, a set of learnable pre�x to-

kens are appended or prepended to the input sequence [190, 186, 207]. Let’s consider an input sequence

s ∈ R
n×d, where n is the sequence length and d is the embedding dimension. The pre�x tokens can be

represented as p ∈ R
m×d, where m denotes the number of pre�x tokens. These vectors act like virtual

tokens which the original tokens can attend to. They are initialized and learned during the task-speci�c

adaptation phase. The modi�ed input sequence, after appending the pre�x tokens, can be expressed as

S = [p; s] ∈ R
(m+n)×d. The model then processes this extended sequence. These pre�x tokens can be

viewed as task descriptors that are designed to guide the model towards the desired task-speci�c behavior

(see Fig. 6.2).

With adapters, we can treat the optimization from Eq. 6.1 as one over adapter weights instead, where

the model is parametrized by θ̂ = {θ,ω} and ω is the set of adapter weights we are optimizing for.

6.4.2 TAIL for continual imitation learning

We consider the continual imitation learning problem as a typical application of the proposed TAIL adap-

tation paradigm. The goal of continual imitation learning is to ensure that the model performs e�ectively

on the current task and without signi�cant degradation of performance in past tasks.

Given pretrainedmodel weights, denoted as θ, and a new task Tk with demonstrationsDk = {τ
1
k , . . . , τ

N
k },
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we initialize the task-speci�c adapter weightωk with far less parameters than the base model: |ωk|≪ |θ|.

The adapter weights are inserted into the model through the integration methods introduced in Sec. 6.4.1.

By optimizing the behavior cloning loss in Eq. 6.1 w.r.t ωk while keeping the pretrained weights frozen,

the policy adapts to Tk without interfering with previous tasks.

To execute a task, the corresponding lightweight adapters are loaded as a plugin of the pretrained

network weights. For example, when revisiting a prior task Tj , where j ≤ k, the model is con�gured to

solely activate the j-th adapter ωj . This entire procedure can be streamlined as follows:

1. For an incoming task Tk, acquire the training set Dk, initialize a task-speci�c adapter ωk.

2. Combine adapter ωk with the base model θ using either parallel, sequential, or pre�x token.

3. Train the adapter on Dk to optimize Eq. 6.1 for ωk, keeping pretrained parameters θ frozen.

In essence, TAIL ensures task-speci�c knowledge is contained within the adapters, thereby enabling e�-

cient adaptation without catastrophic forgetting. It’s also worth noting that the TAIL framework is �exible.

The choice of integration method or the speci�c architecture of the adapter can be tailored based on the

complexity of the task or the available computational resources.

6.5 Experiments

In this section, we evaluate TAIL on a wide range of tasks and benchmark its performance against other

�ne-tuning approaches. We mainly aim to answer the following questions: (1) Which e�cient adaptation

methods in TAIL work best? (2) Can TAIL prevent catastrophic forgetting of previously learned tasks,

while allowing more e�cient forward adaptation to new tasks over standard adaptation methods? (3)

What are the computational e�ciencies gained by using TAIL? Addressing them requires a set of diverse

tasks in realistic environments, as we describe in the following section.
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Kitchen Spatial Goal Object Living Room Study Room

Figure 6.3: Our task suites for continual imitation learning (excluding LIBERO-10). The robot, placed in a tabletop
environment, is equipped with a 6-DOF arm and a parallel gripper. It receives RGB images from two views, joint
states, and language instructions, and is tasked with producing continuous actions to control its arm.

6.5.1 Datasets and Benchmark Suites

We utilize the LIBERO robotic manipulation continual learning benchmark [201], which features a diverse

range of tasks that mirror human daily activities, such as turning on a stove, moving books, and opening

drawers. Each task is speci�ed via natural language instructions, for instance, "Open the top drawer of the

cabinet, and put the bowl in it."

We craft a pretraining task suite, namedKitchen, involving 40 diverse tasks sourced from the LIBERO-

90 dataset’s kitchen scenes. We then evaluate adaptation to 5 separate task suites. LIBERO contains 3 task

suites tailored for continual learning, focusing on evaluating di�erent aspects of knowledge adaptation:

the Spatial task contains the same objects in each scene but with di�erent spatial layouts; each task in the

Goal suite has distinct goals (such as open the drawer, or turn on the stove), while keeping the objects and

layout �xed; the Object suite contains pick-and-place tasks for di�erent objects in the scene but with the

same layout. To create a more comprehensive experimental setting, we also create 2 additional task suites

(from LIBERO-90): Living Room, and Study Room. We adopt 8 tasks from each of the 5 adaptation task

suites, respectively. Finally, we separately evaluate each task sequentially in LIBERO-10, a benchmark

with 10 challenging long-horizon tasks. See Fig. 6.3 for task suite examples and Appendix Sec. D.4 for

more details.
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Figure 6.4: Success rates for di�erent types of adapters under our TAIL framework. None of these methods su�er
from catastrophic forgetting, so backward evaluation results are not presented here. LoRA performs best across all
tasks, underscoring the bene�ts of the parallel integration approach.

6.5.2 Experiment setup

Evaluation metrics. The primary metric we report is average per-task suite success rate, measured by

checking if current state aligns with pre-de�ned goal states. For continual learning, we also assess For-

ward Transfer (FWT) and Backward Transfer (BWT) across the curriculum of suites. Following the

metric proposed in LIBERO [201], FWT is computed by the maximum success rate one algorithm can

achieve when adapting to a new task. We denote FWT at task k asFk. Meanwhile, BWTmeasures the suc-

cess rate increase on previous tasks. Namely, when adapting to the k-th task, we record the best FWTmodel

on this task and then evaluate thismodel on all previous k−1 tasks, obtaining success rateSi, 1 ≤ i ≤ k−1.

Then we compute the success rate di�erence between the new model and the best FWT of the previous

k− 1 tasks and then average among them to obtain the BWT metric: Bk =
1

k−1

∑k−1
i=1 (Si−Fi). For both

metrics, higher is better.

Model architecture. Weadopt the CLIP-basemodel [289] as both the spatial encoder and the language

instruction encoder, eachwith 12 transformer layers. A 6-layer GPT2 structure [291] serves as our temporal

encoder, with the FiLM module [280] handling input fusion. These components are well-regarded in the

literature [54, 39, 154]. Further architectural details can be found in Appendix D.1.

Continual Learning Baselines. We adopt four baselines: Full Fine-Tuning (FFT), Frozen Pretrained

Features (FPF)whichmirrors the linear probingmethod [173] but also tunes both the policy head and fusion
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module per task, Experience Replay (ER) [48] which uses a 50-50 data split between new and previous task

data while adapting to a new task [301], Elastic Weight Consolidation (EWC) [169] which regularizes

updates of crucial parameters from earlier tasks based on their Fisher information, and PackNet [229]

which prunes parameters to then be re-learned for every new task. These all use the same model and task

conditioning, i.e., language, as TAIL. Further baseline details in Appendix D.2.1.

TAIL Adapters. We use LoRA [141], Bottleneck Adapter [140], and Pre�x Tuning [190] to repre-

sent parallel, sequential, and pre�x integration styles. RoboAdapter [322], a speci�c implementation for

decision-making, stands as another sequential integration style. Unlike the Bottleneck Adapter that ap-

plies weights at every transformer layer, it introduces weights only at speci�c transformer layers and

exclusively after the feedforward layer. Con�guration speci�cs and more details for these adapters are

available in Appendix D.2.2.

Training, Adaptation, and Evaluation. Each task provides 50 successful human demonstrations.

These are divided into 40 training trajectories and 10 for validation. We report success rates over 10 scenes

with initial states that are unseen in training. This limited demonstration setup o�ers an opportunity to

determine which technique is less prone to over�tting in data-restricted conditions. Given our focus on

evaluating the adaptation of large pretrained models, we further increase adaptation di�culty by training

on and evaluating adaptation performance on all tasks within a task suite simultaneously.∗ We pretrain

on Kitchen until performance convergence (100 epochs). Subsequent adaptations follow two setups: (1)

sequential adaptation across the Spatial, Goal, Object, Living Room, and Study Room task suites for

100 epochs each, and (2) adaptation to each long-horizon task within the LIBERO-10 benchmark over 50

epochs. Each experiment is conducted with 3 di�erent random seeds. Except for the Experience Replay

∗We use one adapter per task suite. LIBERO [201] originally evaluated on a per-task basis.
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(ER) method, data from earlier tasks remains unavailable in later stages. Our diverse adaptation setup pro-

vides a thorough and in-depth examination of knowledge transfer across a spectrum of domains, including

spatial, procedural, visual, and compositional.

In the pretraining phase for TAIL, we add trainable adapters to the CLIP spatial and instruction en-

coders while freezing the encoder weights. All other model weights are fully learnable. During adaptation,

the CLIP encoders and the GPT2 decoder are frozen, while adapters for them, the fusion module, and the

policy head are tuned. Adapter weights are initialized from previous adapters with minor random noise.

A fusion module and policy head copy are maintained during the adaptation for both TAIL and FPF. The

detailed hyperparameters are presented in Appendix D.2.

6.5.3 Results and analysis

Comparison of TAIL Integration Styles. Fig. 6.4 showcases the continual adaptation success rates for

di�erent TAIL methods. The e�cacy of LoRA suggests that a well-pretrained model has a surprisingly low

intrinsic dimension for imitation learning tasks [6]. This implies the existence of a low-rank reparameter-

ization that is just as adept for �ne-tuning as the full parameter space. Further, the pre�x tuning method

outperforms the bottleneck-based approach [140], indicating that the sequential integration style may not

be the optimal choice for continual learning, potentially due to its inherent "�ltering" mechanism. Surpris-

ingly, RoboAdapter [322] generally performs the worst, potentially due to only introducing weights after

the feedforward layer as opposed to after [140] or within [190, 141] the attention layer. Due to LoRA’s

pronounced e�ectiveness, it is predominantly employed as our TAIL integration method in subsequent

experiments.

TAIL vs. Conventional Fine-tuning. Across all evaluations, TAIL vastly outperforms all baselines

in both forward and backward transfer, demonstrating that conventional �ne-tuning methods are weak

in data-scarce continual learning. In Fig. 6.5 we plot continual learning success rates over 6 task suites,
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Figure 6.5: Success rates on the pretraining stage on 40 tasks in the LIBERO Kitchen scene and 5 adaptation stages,
each with 8 tasks over 100 epochs, which are continuously evaluated in subsequent stages (shaded area).

where TAIL outperforms the best baselines by over 3x in some comparisons and generally achieves the

best success rates. We display additional results on LIBERO-10, long-horizon tasks, in Table 6.1. Here, TAIL

again performs best, with perfect backward transfer and forward transfer capabilities signi�cantly better

than the baselines: FFT not only exhibits marked catastrophic forgetting of earlier tasks—evidenced by

poor BWT—but also compromises the model’s adaptability to new tasks. This decline in forward transfer is

characterized by a steady descent in success rates as training progresses, displayed in Appendix Table D.4.

Such deterioration in �exibility has been recognized in other studies as well [215, 176]. PackNet is able to

adapt well on some task suites as it learns new parameters within di�erent parts of the model, but overall

is still outperformed by TAIL.

Table 6.1: Adaptation results on 10 long horizon tasks, higher is better. The BWT for TAIL methods are all 0 (no
forgetting). FPF results were omitted due to its near-zero performance. See per-task results in Appendix Table D.4.

Conventional Fine-Tuning Methods TAIL-based Methods (Ours)

Full Fine-Tuning Experience Replay EWC LoRA Pre�x Bottleneck RoboAdapter
FWT ↑ BWT ↑ FWT ↑ BWT ↑ FWT ↑ BWT ↑ FWT ↑ FWT ↑ FWT ↑ FWT ↑

Average 0.48 ± 0.10 -0.55 ± 0.21 0.45 ± 0.09 -0.49 ± 0.23 0.30 ± 0.16 -0.43 ± 0.20 0.70 ± 0.10 0.51 ± 0.15 0.46 ± 0.11 0.42 ± 0.13

Adaptation Plasticity. Exhaustive �ne-tuning on specialized domains has been found to distort pre-

trained features [173], undermining model adaptability. Our circle-back experiments in Table 6.2, where
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a full �ne-tuned model is re-trained on prior task suites, demonstrate a steep performance drop upon re-

visiting previously learned tasks. Additional experiments in Appendix D.3.3 further highlight this issue.

Table 6.2: The success rate of initial train-
ing and revisiting previous tasks with FFT.
FFT su�ers from catastrophic forgetting
and performsworse on re-visits despite re-
training on the same data.

Type
LIBERO Task Suite

Spatial Goal Object

Initial 0.79 0.42 0.42

Re-visit 0.53 ( ↓ 0.26) 0.20 (↓0.22) 0.27 (↓0.15)

The training and validation losses, detailed in Appendix D.3.1

and Fig. D.2, highlight FFT’s propensity to over�t. This translates

to a notable decline in success rates, reinforcing the challenges

FFT faces in balancing retention of prior tasks with the assimila-

tion of new ones.

While ER and the regularization-based method EWC exhibit

some potential in mitigating catastrophic forgetting, they were

detrimental to forward transfer performance. Their downsides

are also re�ected in storage and computing costs: ER requires more storage for previous data than TAIL

LoRA adapter weights (e.g., Kitchen dataset at 28GB vs 7.8MB for TAIL’s LoRA adapter). Furthermore,

EWC presents signi�cant challenges for larger models because of the increased GPUmemory consumption

from maintaining a copy of the entire weights of the old model in memory. We also found it to exhibit

unstable training due to the regularization loss. More discussions are presented in Appendix D.2.1.

When does TAIL work best? The e�cacy of TAIL hinges signi�cantly on the base model’s features.

We compare TAIL under di�erent pretraining strategies and models in Appendix Sec. D.3.2 and D.3.3. In

short, TAIL works best with our pretraining architecture and frozen CLIP visual/language encoders, and

performance drops when we �ne-tune the pretrained encoders, likely as FFT contaminates the rich CLIP

features when �ne-tuned in a niche domain with sparse data.

Analysis Summary. We argue in favor of a large pretrained base model augmented with numerous

lightweight plugins tailored for di�erent downstream tasks. This framework, TAIL, holds considerable

promise for advancing embodied intelligence in real-world applications; the storage footprint of our entire

model is about 660MB, and duplicating thismodel for each task in a stream of oncoming tasks is impractical.
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Table 6.3: Comparison of trainable parameters and memory usage for TAIL and FFT.We use (·%) and ↓ (·%) to denote
the percentage of trainable parameter and the decrease of GPU memory w.r.t FFT.

Method
Conventional TAIL-based Methods (Ours)

Full Fine-Tuning LoRA RoboAdapter Bottleneck Adapter Pre�x Tuning
CLIP (Spatial & Task Encoder) 149.62M 0.49M 1.29M 1.31M 0.58M
GPT2 (Temporal Encoder) 21.78M 0.69M 0.40M 0.40M 0.24M
Fusion module and policy head 0.84M 0.84M 0.84M 0.84M 0.84M
Total Parameters 172.24M 2.02M (1.17%) 2.53M (1.47%) 2.55M (1.48%) 1.66M (0.93%)
GPU Memory (Batch 14) 20.1G 15.5G (↓ 23%) 14.0G (↓ 30%) 14.9G (↓ 26%) 15.8G (↓ 21%)

Meanwhile, the space occupied by one such model can accommodate as many as 84 task-speci�c adapters,

which, as our experiments show, can outperform full �ne-tuning regardless. Moreover, the features of the

pretrainedweights remain intact, ensuring their applicability across a broad array of domains. In summary,

TAIL o�ers a promising avenue for the e�cient adaptation of large decision-making models. Despite the

fact that our method requires signi�cantly less computation and memory (and storage), our experiments

show that it consistently outperforms all prior approaches in the continual learning setting. We would also

like to highlight that the TAIL framework is not restricted to imitation learning, but also other learning

methods such as reinforcement learning.

6.6 Conclusion

In this study, we examined the challenges of e�ciently adapting large pretrained models for decision-

making and robotics applications. We proposed TAIL, an e�cient adaptation framework for pretrained

decision-making models. Through a comprehensive exploration of parameter-e�cient �ne-tuning (PEFT)

techniques in TAIL, especially Low-RankAdaptation (LoRA), we demonstrated their potential in enhancing

adaptation e�ciency, mitigating catastrophic forgetting, and ensuring robust performance across diverse

tasks. Our empirical evaluations on the LIBERO benchmark further underscored the advantages of these

techniques in continual learning scenarios. As the demand for adaptive, intelligent agents grows across

various domains, the insights from this research o�er a promising direction for the future of e�cient model

adaptation in decision-making contexts.
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Chapter 7

HAND Me the Data: Fast Robot Adaptation via Hand Path Retrieval

7.1 Introduction

Retrieve

Train

Play Data

Figure 7.1: HAND learns a policy
from as little as one (1) human hand
demonstration.

Imagine you want to train a kitchen helper robot to assist with

cooking, cleaning, and washing dishes. What is the most e�cient

way to teach it to perform such a diverse set of tasks? One promis-

ing direction is imitation learning on large robotics datasets [67,

163, 412], which has shown to learn capable robot policies [347,

165, 32, 192, 346]. However, these approaches still require signif-

icant amounts of task-speci�c demonstration data for �ne-tuning

to each new robot embodiment or environment.

This reliance on per-task human data collection makes training

a robot that can performmany tasks in a speci�c real-world setting,

such as your kitchen, di�cult. In contrast, task-agnostic play data

collected through free-form robot teleoperation [216, 391, 237] is

easy to gather, because it does not require constant environment resets or task-speci�c trajectory labeling.

However, play data is di�cult to use for training a robot to solve speci�c downstream tasks without ad-

ditional labeling. One approach to leverage play data is by retrieving relevant behaviors that can be used
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for task-speci�c training. While prior robot data retrieval methods require additional teleoperated target-

task demonstrations [258, 86, 197, 238, 335], we instead propose to retrieve robot data via human hand

demonstrations, which are easy to provide. Our key insight is to capture coarse guidance from the hand

demonstration, in the form of relative 2-dimensional hand paths, to retrieve diverse yet relevant behaviors

from the play dataset. We propose HAND, a simple and time-e�cient approach to leverage play data for

quickly adapting robots to a range of diverse tasks, requiring as little as one human hand demonstration

(see Figure 7.1).

HAND avoids the need for calibrated depth cameras [270, 128], specialized eye-in-hand setups [166],

or detailed hand-pose estimation [166, 185]. Instead, it �rst labels a robot play dataset with 2D gripper po-

sitions relative to the RGB camera frame by tracking the gripper using a visual point-tracking model [158,

159]. When a human hand demonstration is provided, HAND tracks the hand trajectory with the same

simple pipeline. The hand positions are then converted into 2D relative sub-trajectories, capturing motion

independent of the starting point [402]. After an initial �ltering step that removes unrelated behaviors

using a visual foundation model [269], HAND retrieves matching sub-trajectories from the play dataset

based on the 2D relative hand path. Finally, a policy pre-trained on the full play dataset is �ne-tuned on the

retrieved sub-trajectories, encouraging the policy to specialize in behaviors relevant to the demonstrated

task. In our experiments, we show that because HAND retrieves primarily based on hand motion, it is

more robust to irrelevant visual features such as background clutter and lighting changes compared to

purely visual retrieval methods.

Our experiments, both in simulation in CALVIN [237] and on a real WidowX robot, demonstrate that

HAND enables quick adaptation to 8 diverse downstream tasks with at most 2 provided hand demonstra-

tions. Notably, HAND outperforms the best baseline by 2× on a real robot. We also demonstrate HAND

works with hand demonstrations collected from completely di�erent scenes from the robot’s. Finally,
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we also demonstrate that HAND enables real-time learning of challenging long-horizon tasks in just 3.5

minutes of total experiment time while being 5× faster to collect than teleoperation demos.

7.2 Related Works

Robot Data Retrieval. Prior work has demonstrated retrieval as an e�ective mechanism for extracting

relevant on-robot data for training robots [258, 86, 197, 238, 335]. For example, SAILOR [258] and Behavior

Retrieval [86] pre-train variational auto-encoders (VAEs) on prior robot images and actions to learn a

latent embedding. This latent embedding is used to retrieve states and actions from an o�ine dataset

similar to ones provided in expert demonstration trajectories. However, retrieving based on learned full

image encodings or even raw pixel values [335] can be noisy; Flow-Retrieval [197] instead trains a VAE

to encode optical �ows indicating movement of objects and the robot arm in the scene. Similar to Flow-

Retrieval, our method HAND also retrieves based on robot arm movement. However, rather than training

a dataset-speci�c VAEmodel that may not be robust to large visual di�erences, we retrieve from our o�ine

robot data by primarily matching motions of a human hand demonstration using relative 2D paths of the

robot end-e�ector in the prior data. This hand path retrieval helps us robustly retrieve relevant robot arm

behaviors.

STRAP [238] addresses visual retrieval robustness issues of prior work by using features from DINO-

v2 [269], a large pre-trained image-input foundation model for retrieval. However, STRAP, along with all

aforementioned retrieval work, assumes access to expert robot demonstrations for the target tasks. HAND

on the other hand, only requires a single, easier-to-collect human hand demonstration and results in better

retrieval and downstream task success rate compared to STRAP.

Learning FromHumanHands. Similar to HAND, a separate line of work has proposed methods to use

human hands to learn robot policies. One approach is to train models on human video datasets to predict

84



future object �ows [381, 397] or human a�ordances [20, 172]. These intermediate a�ordance and �ow

representations are then used to either train a policy conditioned on this representation [381] on robot data

or control a heuristic policy [397, 20, 172]. Other works focus on learning directly from human hands [270,

128, 166, 160, 185]. These works generally use hand-pose detection models aided by multiple cameras

or calibrated depth cameras to convert hand poses directly to robot gripper keypoints [270, 128, 185].

However, works that exclusively retrieve human data are restricted to constrained policy representations

as they must match human hand poses to robot gripper poses. Kim, Wu, and Finn [166] instead use an

eye-in-hand camera mounted on a human demonstrator’s forearm to train an imitation learning policy

conditioned on robot eye-in-hand camera observations. Unlike these prior works, HAND only requires

a single RGB camera from which the robot gripper can be seen. Also, we focus on retrieving robot play

data, allowing us to train arbitrarily expressive policies without constrained policy representations [270,

128, 185] or intermediate representations [381, 397, 20, 172].

7.3 HAND: Fast Robot Adaptation via Hand Path Retrieval

Weassume access to a dataset of task-agnostic robot play data,Dplay, consisting of trajectories τi = {(ot, at)}Ti=1,

where each ot is per-timestep observation that includes RGB images of the robot gripper and robot pro-

prioceptive information, and at is the robot action. These trajectories may span many scenes or tasks and

can vary in length, potentially covering long-horizon behavior. We do not assume task labels (e.g., lan-

guage labels), as data collection is easier to scale without labeling each sub-trajectory in a long-horizon

play trajectory.∗ We assume the RGB camera’s angle relative to the robot base is �xed across trajectories,

which is the case for tabletop robot manipulation setups.

In contrast to prior methods for retrieving robot data [258, 86, 197, 238], we do not assume access

to robot demonstrations for the target task.† Instead, for each desired target task, we assume a human

∗HAND can also easily incorporate task labels as an extra policy conditioning input.
†Our experiments show that HAND outperforms baselines which have access to expert robot demos.
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Figure 7.2: HAND enables fast-adaptation to a new target task by using an easy-to-provide hand demon-
stration of the target task (Left). We propose a two-step retrieval procedure where we �rst �lter the trajec-
tories in the o�ine play dataset, Dplay, for visually similar trajectories based on features from a pretrained
vision model. We use o�-the-shelf, pretrained hand detection and point tracking to construct 2D paths of
the motion for both the human hand and robot end-e�ector. We use these paths as a distance metric to re-
trieve relevant trajectories from the play dataset (Middle) for quickly �ne-tuning a pretrained transformer
policy on the target task (Right).

demonstrates it with their hand without teleoperating the robot. Our experiments show that these hu-

man hand demonstrations in Dhand can be collected quickly, on average 5× faster than robot teloperation

demonstrations, by untrained users. Additionally, high-quality human hand demonstrations may require

signi�cantly less e�ort than high-quality robot teleoperation demonstrations [376, 188]. Each demonstra-

tion video inDhand consists of a sequence of RGB image observations o1, . . . , oH . We assume that the hand

videos are captured from approximately the same position relative to the human hand as the robot play

data’s image observations to the robot gripper.

Given Dplay and Dhand, we aim to train a policy πθ(a | o) to perform the target task demonstrated by

the human in Dhand. Since we do not assume task labels in Dplay and we are provided no expert robot

teleoperation demonstrations, we must retrieve sub-trajectories indicating how to perform the behavior

demonstrated in Dhand from Dplay for training π. We denote this retrieved dataset, which we later use

for imitation learning, as Dretrieved. Thus, the key challenges we resolve in our method HAND are: (1)

designing a representation that can unify the behaviors in robot sub-trajectories and human hand demon-

strations (Section 7.3.1), (2) retrieving relevant sub-trajectories based on a distance metric between these
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representations (Section 7.3.2), and (3) time-e�ciently training a policy that can perform various unseen

target tasks with a high success rate without expert demonstrations (Section 7.3.3). See Figure 7.2 for an

overview and Algorithm 7 for full algorithm pseudocode.

7.3.1 Path Distance as a Unifying Representation for Retrieval

Existing robot data retrieval methods assume access to expert demonstrations from which they extract

proprioceptive information (e.g., joint states and actions) alongside visual features for retrieval [258, 86,

197, 238, 335]. However, since Dhand contains only visual data and no robot actions, retrieval based purely

on appearance can be noisy—especially due to the visual domain gap between hand demonstrations in

Dhand and robot demonstrations in Dplay (c.f., Figure 7.2, left). To address these issues, we propose an

embodiment-agnostic, behavior-centric retrieval metric that enables matching between Dhand and Dplay

based on demonstrated behaviors rather than appearance.

Using 2D Paths for Retrieval. The movement of the robot end-e�ector over time provides rich

information about its behavior [192]. We represent behaviors in both datasets using the paths traced by

the human hand or the gripper. Because we assume access only to an RGB camera from which the hand

or the gripper is visible (i.e., no depth), we construct these paths in 2D relative to the camera viewpoint

for both Dplay and Dhand.‡

Obtaining Paths fromData. To extract paths, we use CoTracker3 [159], an o�-the-shelf point tracker

capable of tracking 2D points across video sequences, even under occlusion. CoTracker3 only requires a

single point on the gripper or hand to generate a complete trajectory. We use Molmo-7B [77], an open-

source 7B image-to-point foundation model, to automatically select this point by prompting it at the mid-

point of each trajectory with either “Point at the center of the hand” or “Point to the robot gripper.” Using

‡If both datasets have additional calibrated depth information, HAND can also operate on 3D paths.
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the middle frame ensures a higher chance of visibility in case the gripper or hand is not yet in frame at the

beginning or occluded at the end.§

Given the 2D point (x, y)hand or (x, y)play from the middle frame, we use CoTracker3 to perform bidi-

rectional point tracking, resulting in a 2D path phand = {(xt, yt)hand}
H
t=1 or pplay = {(xt, yt)play}

T
t=1 for

each trajectory. See the Gripper/Hand Tracking block of Figure 7.2 for a visualization of this pipeline.

Next, we describe how we use 2D paths to retrieve sub-trajectories from Dplay.

7.3.2 Retrieving Relevant Sub-Trajectories using Path Distance

Background. For identifying relevant sub-trajectories in Dplay, we follow Memmel et al. [238] and use

Subsequence Dynamic Time Warping (S-DTW) [247], an algorithm for aligning a shorter sequence to

a portion of a longer reference sequence. Given a query sequence Q = {q1, q2, . . . , qH} and a longer

reference sequence R = {r1, r2, . . . , rT }, where T > H , the goal of S-DTW is to �nd a contiguous

subsequence of R that minimizes the total cumulative distance between elements of both sequences. In

HAND, the query sequences are the 2D hand demo paths {(xt, yt)hand}Ht=1 and the reference sequences

are the 2D paths generated from long-horizon robot play data {(xt, yt)play}Tt=1.

Sub-Trajectory Preprocessing. To preprocess the datasets for S-DTW, we �rst segment the o�ine

play dataset, Dplay, into variable-length sub-trajectories using a simple heuristic based on proprioception

proposed in several prior works [327, 238]. In particular, we split the trajectories whenever the accelera-

tion or velocity magnitude (depending on what proprioception data is available) drops below a prede�ned

ϵ value, corresponding to when the teleoperator switches between tasks. We �nd that this simple heuristic

can reasonably segment trajectories into atomic components resembling lower-level primitives. We also

split the hand demonstrations evenly into smaller sub-trajectories based on how many subtasks the hu-

man operator determined they have completed. After sub-trajectory splitting, we have two sub-trajectory

§Points can also be obtained heuristically, e.g., if the robot starts from the same position in each Dplay traj.

88



datasets, Thand = {ti1:a, t
i
a:b, . . . , t

i
Hi−pi:Hi

∀ τ ihand ∈ Dhand} and Tplay = {ti1:a, t
i
a:b, . . . , t

i
Ti−pi:T

∀ τ iplay ∈ Dplay}

where pi is the length of the last sub-trajectory of trajectory i. Inspired by prior work that proposes to

cluster trajectories based on relative embedding di�erences [402], each sub-trajectory is represented in rel-

ative 2D coordinates, i.e., pt = [xt+1 − xt, yt+1 − yt]. Relative coordinates ensure invariance based on the

starting positions of the hand or gripper so that these starting positions do not in�uence how trajectories

are retrieved.

Visual Filtering. One issue with retrieving sub-trajectories based only on path distance is that dif-

ferent tasks can have similar movement patterns. For example, tasks like “pick up the mug” and “pick up

the cube” can appear nearly identical in 2D path space. But, the retrieved trajectories for one task may

not bene�t learning of the other; since we don’t assume task labels in Dplay, a policy directly trained on

“pick up the cube” retrieved sub-trajectories may still fail to pick up a mug. Therefore, before retrieving

sub-trajectories with paths, we �rst run a visual �ltering step to ensure that the sub-trajectories we re-

trieve will be task-relevant. We use an object-centric visual foundation model, namely DINOv2 [269], to

�rst �lter out sub-trajectories performing unrelated tasks with di�erent objects. Speci�cally, we use the

DINOv2 �rst and �nal frame embedding di�erences, representing visual object movement from the �rst to

last frame, between human hand demos and robot play data to �lter Tplay. We �nd that using this simple

method is su�cient to �lter out most irrelevant sub-trajectories. For a given image sequence ohand1:H from a

hand sub-trajectory and image sequence oplay1:T from a robot play sub-trajectory, we de�ne the cost as:

Cvisual(o
hand
1:H , o

play
1:T ) = ||DINO(o

hand
1 )− DINO(oplay1 )||22

︸ ︷︷ ︸

�rst frame DINO embedding di�erence

+ ||DINO(ohandH )− DINO(oplayT )||22
︸ ︷︷ ︸

last frame DINO embedding di�erence

. (7.1)

We sort these costs and take theM trajectories with lowest cost as possible retrieval trajectories for each

human hand demo sub-trajectory in Thand. The rest are discarded for those hand demos.
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Retrieving Sub-Trajectories. Finally, we then employ S-DTW to match the target sub-trajectories,

Thand, to the set of visually �ltered segments ∈ Tplay. Given two sub-trajectories, ti ∈ Tplay and tj ∈ Thand,

S-DTW returns the cost along with the start and end indices of the subsequence in tj that minimizes

the path cost (see Figure 7.2). We select the K matches from Dplay with the lowest cost to construct our

retrieval dataset, Dretrieved.

7.3.3 Putting it All Together: Fast-Adaptation with Parameter-E�cient Policy Fine-

tuning

We aim to enable fast, data-e�cient learning of the task demonstrated in Dhand. To this end, we �rst

pretrain a task-agnostic base policy πbase on Dplay with standard behavior cloning (BC) loss. While our

approach is compatible with any policy architecture, we use action-chunked transformer policies [410]

due to their suitability for low-parameter �ne-tuning and strong performance in long-horizon imitation

learning [411, 412, 127, 32].

Adapting to Dretrieved. To rapidly adapt to a new task with minimal data, we leverage parameter-

e�cient �ne-tuning using task-speci�c adapters—small trainable modules that modulate the behavior of

the frozen base policy. Adapter-based methods have shown promise in few-shot imitation learning [193,

210], making them ideal for our limited retrieved dataset Dretrieved. Following the �ndings of Liu et al.

[210], we speci�cally insert LoRA layers [142] into the transformer blocks of πbase. These are low-rank

trainable matrices (typically 0.1%–2% of the base policy’s parameters) inserted between the attention and

feedforward layers (see Figure 7.2, LoRA Layers). During �ne-tuning, we keep πbase frozen and update

only the parameters of these LoRA layers, θ, using Dretrieved.

Loss Re-Weighting. While our retrieval mechanism identi�es sub-trajectories relevant to the target

task, not all will be equally useful. To prioritize the most behaviorally aligned examples, we reweight the

BC loss with an exponential term ∈ (0,∞) following Advantage-Weighted Regression [279], where each
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sub-trajectory is weighted based on its similarity (from S-DTW) to the hand demonstration. Intuitively,

this upweights the loss of the most relevant examples in Dretrieved and conversely downweights those that

are less relevant. Finally, because trajectory cost scales vary depending on the task being retrieved and the

features being used for S-DTW, we rescale the S-DTW costsCi,path to a �xed range. For each τi ∈ Dretrieved,

its weight e−Ci,path is scaled to between [0.01, 100], where the normalization term comes from the sum of

costs of all trajectories in Dretrieved. Our �nal training loss is:

LBC;θ =
1

|Dretrieved|

∑

τi∈Dretrieved

exp(−Ci,path)
︸ ︷︷ ︸

Normalized Weight

× (− log πθ(a | o))
︸ ︷︷ ︸

BC Loss

. (7.2)

7.4 Experiments

Our aim in the experiments is to study the e�cacy of HAND as a robot data retrieval pipeline and evaluate

its ability to quickly learn to solve new downstream tasks. To this end, we organize our experiments to

answer the following questions, in order:

(Q1) How e�ective is HAND, using 2D relative paths, in retrieving task-relevant behaviors?

(Q2) Does HAND work with hand demonstrations from unseen scenes?

(Q3) Does HAND enable learning tasks in new scenes in simulation?

(Q4) Can HAND enable real-time, fast adaptation on a real robot?

7.4.1 Experimental Setup

We evaluate HAND both in simulation using the CALVIN benchmark [237] and on real-world manipula-

tion tasks with the WidowX-250 robot arm.

CALVIN contains unstructured, teleoperated play data in four tabletop manipulation environments

{A,B,C,D}, that share the same set of objects, but have di�erent visual textures and static object locations (e.g.,

slider, button, switch), shown in Figure E.1 (Left). Because it is infeasible to provide explicit human hand
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Figure 7.3: CALVIN Results. Task success rate of HAND and baseline methods on the CALVIN ABC-D task
across three random seeds. Ablations of HAND are denoted by hatches. HAND and ablations outperform the
next best baseline Flow on task success rate across all tasks.

demonstrations in CALVIN, we instead perform end-e�ector point-tracking on expert task demonstrations

to mimic the e�ect of hand-based tracking. We uniformly sample N = 6 task-speci�c expert trajectories

from environment D as Dhand, and utilize about 17k trajectories from environments {A,B,C} as Dplay. We

evaluate our �ne-tuned policy in environment D across 3 tasks.

Real World. We demonstrate that HAND can also scale to real-world scenarios by evaluating on sev-

eral manipulation tasks in a kitchen setup shown in Figure E.2. We collect a task-agnostic play dataset

of about 50k transitions. Human teleoperators were instructed to freely interact with the available ob-

jects in the scene without being bound to speci�c task goals. Object positions are randomized within

the workspace during data collection and evaluation. We also introduce two di�cult, long-horizon tasks,

Put K-Cup in Coffee Machine and Blend Carrot, which require great precision and more than 150

real-world timesteps at a 5hz control frequency to execute, highlighting the capabilities of HAND to learn

complex behaviors in real-time. Partial success is provided for tasks composed of multiple subtasks. Refer

to Appendix E.1.2 for description of each task.

Baselines: We compare HAND to several retrieval baselines. All methods use the same transformer

policy where applicable. We refer the reader to Appendix E.1 for implementation details and Appendix E.5

for extensive ablation results. We consider the following baseline methods:

• πbase is the base policy pre-trained only on task-agnostic play data;
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• CLIP retrieves based on cosine similarity between target task language description’s CLIP embeddings

(instead of hand demonstrations) and play data’s CLIP frame embeddings;

• Flow [197] trains a VAE on pre-computed optical �ow from GMFlow [380] and retrieves based on latent

motion similarity; and

• STRAP [238] also uses S-DTW for sub-trajectory retrieval but computes S-DTW distance based solely

on Euclidean distance between DINO-v2 image embeddings.

STRAP and Flow assume access to expert robot demonstrations for both retrieval and �ne-tuning. Un-

less otherwise stated, we adopt them for our setting without expert trajectory �ne-tuning because we do

not assume access to them. We also perform LoRA �ne-tuning; they train from scratch in their original

implementations but we found LoRA �ne-tuning to perform better for them.

7.4.2 Experimental Evaluation

Block Button Microwave

Flow 7/25 0/25 0/25

STRAP 5/25 0/25 2/25

HAND(-VF) 9/25 13/25 9/25

HAND 15/25 18/25 11/25

Table 7.1: Number of retrieved sub-trajectories

performing demonstrated task. HAND retrieves
more sub-trajectories performing the demon-
strated task compared to Flowand STRAP.

(Q1): HAND retrieves more task-relevant data.

We analyze the quality of retrieved sub-trajectories

between Flow, STRAP and HAND. STRAP and HAND use

S-DTW-based trajectory retrieval, but STRAP relies

purely on visual DINO-v2 embeddings for retrieval.

We provide a single hand demonstration of three real

robot tasks and retrieve the top K = 25 matches

from Dplay. Compared to STRAP, we observe in Ta-

ble 7.1 that HAND retrieves more trajectories in which

the robot actually performs the hand-demonstrated

task. As STRAP retrieves based on visual similarity, it su�ers when there is a substantial visual gap be-

tween the target demonstrations, e.g., human hand videos, and the o�ine robot play dataset. In particular,
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Hand Demo STRAP HAND (-VF) HAND

Figure 7.4: Qualitative retrieval results on out-of-distribution scene. We visualize the top sub-
trajectory match of STRAP HAND without visual �ltering (HAND(-VF)), and HAND on two out-of-domain
demonstrations recorded from an iPhone camera, showing approaching a K-Cup and putting it into the
machine. Only HAND’s top match is relevant for both hand demonstrations.

for the Push Button task, STRAP cannot retrieve any button pushing trajectories in its top 25 matches.

Moreover, we ablate HAND’s visual �ltering step and show that it helps retrieve +30% more relevant

trajectories across all tasks. We provide qualitative comparisons of the retrieved trajectories by STRAP and

HAND in Appendix E.4.

(Q2): HAND works with hand demonstrations from unseen environments. Because HAND re-

trieves based on relative hand motions, it can work with target hand demonstrations from a completely

out-of-distribution scene, provided the camera angle remains relatively close to that in the play dataset.

To demonstrate this scene robustness, we collect hand demos from a di�erent scene with a handheld

iPhone camera and a real co�ee machine. We retrieve from play data containing a completely di�erent

scene with a toy co�ee machine. In Figure 7.4, we show the lowest cost retrieved sub-trajectory of STRAP

compared to HAND and an ablation without the visual �ltering step, HAND(-VF). We can see that both tra-

jectories for STRAP and the retrieved trajectory for reaching the co�ee cup for HAND(-VF) are irrelevant to
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the demonstrated task. By focusing on the motion demonstrated by the human hand after visual �ltering,

HAND retrieves more task-relevant trajectories.

(Q3): HAND enables policy learning in simulation and real world. In Figure 7.3, we demon-

strate that HAND and ablations outperforms the next-best retrieval baseline across all tasks in CALVIN

experiments, highlighting that HAND retrieves trajectories useful for improving downstream performance.

In Figure 7.3, we also ablate the use of S-DTW-based loss weighting from Equation (7.2) with HAND(-CW),

DINO-v2-based visual �ltering from Equation (7.1) with HAND(-VF), and ground truth 3D pose infor-

mation with HAND(+3D,-VF,-CW), We see that HAND outperforms all of these ablations in Move Slider

Left. Surprisingly, in this task, HAND(+3D,-VF,-CW) with priviledged 3D information, even underper-

forms HAND(-CW). We believe this is because, as HAND(+3D,-VF,-CW) retrieves trajectories based on an

exact match in 3D end-e�ector pose, the retrieved trajectories have little variability and thus fail to gen-

eralize to changes in object placement in the scene. In other tasks, we notice that adding visual �ltering

negatively impacts performance, likely for a similar reason that �ltering constrains the diversity of the

resulting data subset and as such tuningM is important depending on the task/environment.
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Figure 7.5: Real-Robot Results. Number of suc-
cesses out of 10 of πbase, STRAP, and HAND.

Real-world experiments in Figure 7.5 demon-

strate that �ne-tuning with HAND improves success

rates by +45% over STRAP across all tasks. Despite

visual �ltering not always helping in CALVIN, we

observe that visual �ltering is necessary in real-

world experiments to retrieve trajectories where

the target object is interacted with, as demon-

strated with HAND(-VF)’s worse retrieval perfor-

mance in Table 7.1. We ablate di�erent K values for real robot tasks in Appendix E.6. We also report the

performance of πbase, which is trained on all of Dplay, as a baseline.
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(Q4): HAND enables real-time, data-e�cient policy learning of long-horizon tasks. We per-

formed two small-scale user studies with IRB approval from our institution to demonstrate real-time learn-

ing. In the �rst study, a participant familiar with HAND iteratively demonstrated each part of a long-

horizon Blend Carrot task (shown in Figure E.2) and trained a HAND policy with over 70% success

rate all in under four (4) minutes from providing a single hand demonstration to deploying the �ne-

tuned policy. A full, uncut video of this experiment can be found on our project website.

Method User 1 (Minutes) User 2 (Minutes)

Hand Demos (Min) ↓ 3 2

Robot Demos (Min) ↓ 10 14

Hand Demos (SR) ↑ 5/10 4/10

Robot Demos (SR) ↑ 3/10 2.5/10

Table 7.2: Hand vs. Robot Teleoperation. Com-
parison of time taken and success rates between hand
and teleoperated demonstrations.

In the second study, two external users with

prior robot teleoperation experience—but not af-

�liated with this research project—each attempted

to collect 10 demonstrations, using both hand and

teleoperation methods, to train the robot for the

Put Keurig Cup in Coffee Machine task (see

Figure E.2). We employ HAND retrieval for hand-

collected demonstrations and STRAP retrieval for

robot teleoperation demonstrations. For a direct comparison, we additionally �ne-tune STRAP using the

collected teleoperated demonstrations. As reported in Table 7.2, teleoperated demonstrations required

over 3× more time to collect than hand demonstrations. Notably, using a single hand demonstration per

user, we �ne-tuned a policy exceeding 40% success rate compared to STRAP which only achieves 25% with

expert demonstration. Further increasing the number of expert demonstrations for STRAP to �ve hurt the

downstream performance. We observe qualitatively that adding more expert teleoperated demonstrations

reduced the quality of retrievals and thus negatively impacting the downstream policy performance. Our

results indicate that hand demonstrations are not only signi�cantly more time-e�cient to collect, but that

HAND with a single hand demonstration is more e�ective than STRAP with multiple expert demonstrations

at learning a new downstream task.
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7.5 Limitations

Relative Camera Viewpoint. One limitation of HAND is that we assume the relative camera viewpoint

between the hand demonstration and play trajectories are similar. However, this is a reasonable assumption

given that many tabletop manipulation works assume a �xed external camera view. Many open-sourced

large-scale o�ine robot datasets similarly assume standardized camera viewpoints [362, 67, 163, 378].

Moreover, we demonstrated the �exibility of HAND as it is robust to out-of-distribution scenes that are

completely di�erent from the ones in the play dataset. In particular, we show that our 2D path retrieval

metric is able to retrieve relevant task trajectories even when using a hand demonstration from a regular

iPhone camera.

Extending to 3D paths for retrieval. While HAND uses 2D paths for retrieval, one future direc-

tion could extend HAND to estimate the hand trajectory in 3D using foundation depth prediction models.

Incorporating depth information could provide more �ne-grained information about the hand path. Fur-

thermore, 2D hand paths do not provide any explicit information about the gripper for retrieval, which

could be useful for more dexterous manipulation tasks. Another direction future work could consider is a

mixture of features for improving retrieval for tasks that require more dexterous control, i.e., cloth folding

or deformable object manipulation.

7.6 Conclusion

We presented HAND a simple and time-e�cient framework for adapting robots to new tasks using easy-

to-provide human hand demonstrations. We demonstrated that HAND enables real-time, unseen task adap-

tation with a single hand demonstration in just several minutes of policy �ne-tuning. Our results highlight

the scalability of HAND to train performant real-world, task-speci�c policies.
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Part III

Scalable Adaptation with Minimal Human Supervision
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Chapter 8

Bootstrap Your Own Skills: Learning to Solve New Tasks with Large

Language Model Guidance

Skill Library

Put 🥖 in ♨

Pick up 🥖

Pick up 🍎

Serve 🥖

Serve baked 🥖

Practice in Environment

Pick up 🥖

LLM

Sample 

Initial Skill Guide Next 

Skill Selection

Policy

Put 🥖 in ♨

LLMPolicy

Serve 🥖

Update Agent

Policy

Name New Skill
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Figure 8.1: BOSS learns to execute a large set of useful, long-horizon skills with minimal supervision by
performing LLM-guided skill bootstrapping. (a): The agent starts with an initial skill library. During boot-
strapping, it practices chaining skills into new long-horizon behaviors using guidance from an LLM. The
collected experience is used to update the policy. Newly discovered skill chains are summarized with an
LLM and added as new skills into the library for further bootstrapping. Thus, the agent’s skill repertoire
grows over time. (b): After bootstrapping, we condition the policy on novel instructions and show execu-
tion in the environment using the bootstrapped skill repertoire.
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8.1 Introduction

Robot learning aims to equip robotswith the capability of learning and adapting to novel scenarios. Popular

learning approaches like reinforcement learning (RL) excel at learning short-horizon tasks such as pick-

and-place [156, 157, 180], but they require dense supervision (e.g., demonstrations [117, 283, 90, 135] or

frequent reward feedback [276, 282, 8]) to acquire long-horizon skills.

In contrast, humans can learn complex tasks with much less supervision—take, for example, the pro-

cess of learning to play tennis: we may initially practice individual skills like forehand and backhand

returns under close supervision of a coach, analogous to RL agents practicing simple pick-place skills

using demonstrations or dense rewards. Yet importantly, in between coaching sessions, tennis players

return to the tennis court and practice to combine the acquired basic skills into long-horizon gameplay

without supervision from the coach. This allows them to develop a rich repertoire of tennis-playing skills

independently and perform better during their next match.

Can we enable agents to similarly practice and expand their skills without close human supervision?

We introduce BOSS (BOotstrapping your own SkillS), a framework for learning a rich repertoire of long-

horizon skills with minimal human supervision (see Figure 8.1). Starting from a base set of acquired primi-

tive skills, BOSS performs a skill bootstrapping phase in which it progressively grows its skill repertoire by

practicing to chain skills into longer-horizon behaviors. BOSS enables us to train generalist agents, start-

ing from a repertoire of only tens of skills, to perform hundreds of long-horizon tasks without additional

human supervision.

A crucial question during practice is which skills are meaningful to chain together: randomly chaining

tennis moves does not lead to meaningful gameplay; similarly, random chains of pick-place movements

do not solve meaningful household tasks. Thus, in BOSS we propose to leverage the rich knowledge

captured in large language models (LLMs) to guide skill chaining: given the chain of executed skills so far,

the LLM predicts a distribution over meaningful next skills to sample. Importantly, in contrast to existing
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approaches that leverage the knowledge captured in LLMs for long-horizon task planning [144, 7, 147, 331],

BOSS can use unsupervised environment interactions to practice how to chain skills into long-horizon task

executions; this practice is crucial especially if the target environment di�ers from the ones used to train

the base skill set. This results in a more robust policy that can compensate for accumulating errors from

the initial skill repertoire.

We validate the e�ectiveness of our proposed approach in simulated household environments from

the ALFRED benchmark and on a real robot. Experimental results demonstrate that BOSS can practice

e�ectively with LLM guidance, allowing it to solve long-horizon household tasks in novel environments

which prior LLM-based planning and unsupervised exploration approaches fail at.

8.2 Preliminaries and Related Work

Reinforcement Learning Reinforcement learning (RL) algorithms aim to learn a policy π(a|s) that

maximizes the expected discounted return Ea∼π,P

[∑

t γ
tR(st, at, st+1)

]
in a Markov Decision Process

M = (S,A, P,R, γ), where S and A are state and action spaces, P : S × A × S → R+ represents

the transition probability distribution, R : S × A × S → R denotes the reward function, and γ is the

discount factor. Temporal-di�erence algorithms are a class of RL algorithms that also learn critic functions,

denoted V π(s) or Qπ(s, a), which represent future discounted returns when following the policy at state

s or after taking action a from state s, respectively [339]. Standard RL algorithms struggle with learning

long-horizon tasks and can be prohibitively sample-ine�cient.

Skill-based RL To solve long-horizon tasks, prior works have focused on pre-training skills, short-

horizon behaviors that can be re-combined into long-horizon behaviors [282, 343, 286, 19, 257]. These

skills can be represented as learned options [343, 19], sub-goal setting and reaching policies [118, 232], a

set of discrete policies [306, 183], or continuous latent spaces that represent behaviors [282, 8, 131, 354,
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203]. Yet, most of these approaches need expert supervision (e.g., demonstrations [117, 283, 90, 135, 118,

232, 324], frequent reward feedback [282, 8, 183]). In contrast, BOSS learns to execute long-horizon tasks

with minimal human supervision via skill bootstrapping.

Unsupervised RL To learn skills without human supervision, recent works have introduced many un-

supervised RL objectives, e.g., based on curiosity [275], contrallability [319, 272], and behavior or state

diversi�cation [2, 93, 370, 114, 406]. Because these works learn skills from scratch and explore without

supervision, they generally focus on locomotion tasks where most behaviors agents can explore, such as

di�erent running gaits, are already meaningful. Few works demonstrate learning of manipulation tasks,

but either require hand-crafted state or action spaces [275] or remain constrained to learning simple, short-

horizon skills [312, 240]. BOSS makes two improvements to enable bootstrapping of long-horizon tasks:

(1) We start from a base repertoire of language-conditioned skills to enable coherent, long-horizon explo-

ration. (2) We leverage an LLM to guide exploration towards meaningful skill-chains within the exponen-

tial number of possible long-horizon behaviors.

Language in RL Prior works have employed language to parameterize rich skill sets to train multi-task

RL agents [337, 218, 150, 39, 404, 210]. Recent progress in training LLMs has enabled approaches that

combine LLMs with pre-trained language-conditioned policies to perform open-loop planning over pre-

trained skills [144, 7, 147, 331, 315]. These works do not perform any policy training or �netuning when

planning with the LLMs; but instead use the LLMs as top-down planners whose plans are given to �xed

low-level skill policies to execute. In contrast, BOSS pratices chaining behaviors in the environment during

skill bootstrapping and thus learns a more robust, closed-loop policy. This leads to substantially higher

success rate for executing long-horizon tasks.

ELLM [87], LMA3 [66], and IMAGINE [64] are closest to our work. ELLM and LMA3 both use an LLM

to generate tasks, with the former requiring a captioningmodel to reward agents and the latter additionally
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using the LLM to hindsight label past agent trajectories for task completion; instead, we expand upon a

learned skill repertoire, allowing for building skill chains while automatically rewarding the agent based on

the completion of skills in the chain. Meanwhile, IMAGINE uses language guidance to generate exploration

goals, requiring a “social partner” that modi�es the environment according to desired goals. In realistic

settings, this social partner requires extensive human e�ort to design. BOSS instead utilizes LLMs to

propose goals in a target environment automatically.

8.3 Method

Ourmethod, BOSS (BOotstrapping your own SkillS), automatically learns to solve new long-horizon, com-

plex tasks by growing a learned skill library with minimal supervision. BOSS consists of two phases: (1) it

acquires a base repertoire of skills (Section 8.3.1) and then (2) it practices chaining these skills into long-

horizon behaviors in the skill bootstrapping phase (Section 8.3.2). BOSS can then zero-shot execute novel

natural language instructions describing complex long-horizon tasks.

8.3.1 Pre-training a Language-Conditioned Skill Policy

We assume access to a datasetDL = {τz1 , τz2 , τz3 , ..., }where τzi denotes a trajectory of (s, a, s
′, r) tuples

and zi is a freeform language description of the trajectory. We also assume access to a sparse reward

function for the primitive skills, e.g., an object detector that can detect if an object is placed in the correct

location. For example, if τzi demonstrates a robot arm picking up a mug, then zi = “pick up the mug.”

and r = 1 in the �nal transition in which the mug is picked up and 0 otherwise. To obtain a language-

conditioned primitive skill policy, we train a standard o�ine RL algorithm on DL. In our experiments, we

use Implicit Q-Learning (IQL) [171] as it is performant and amenable to online �ne-tuning. We condition

the policy and critic networks on the trajectory’s natural language annotation z, yielding a language-

conditioned policy π(a|s, z) and a critic function V (s, z).
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8.3.2 Skill Bootstrapping

After learning the language-conditioned primitive skill policy, we perform skill bootstrapping — the agent

practices by interacting with the environment, trying new skill chains, then adding them back into its skill

repertoire for further bootstrapping. As a result, the agent learns increasingly long-horizon skills without

requiring additional supervision beyond the initial set of skills.

Sampling initial skills. At the start of bootstrapping, the skill repertoireZ = {z1, z2, ...} is initialized

to the set of pre-trained base skills. Upon initializing the agent in the environment at state s1, we must

sample an initial skill. Intuitively, the skill we choose should be executable from s1 i.e., have a high chance

of success. Therefore, in every bootstrapping episode, we sample the initial skill according to probabilities

generated from the pre-trained value function, V (s1, z). We then try to execute the sampled skill until a

timeout threshold is reached.

Guiding Skill Chaining via LLMs. If the �rst skill execution succeeds, the next step is constructing

a longer-horizon behavior by chaining together the �rst skill with a sampled next skill. Naïvely choosing

the next skill by, for example, sampling at random will likely result in a behavior that is not useful for

downstream tasks. Even worse, the likelihood of picking a bad skill chain via random sampling increases

linearly with the size of the skill repertoire and exponentially with the length of the skill chain. For a

modestly sized repertoire with 20 skills and a chain length of 5 there are 205 = 3.2M possible skill chains,

only few of which are likely meaningful.

Thus, instead of randomly sampling subsequent skills, we propose to use large languagemodels (LLMs)

to guide skill selection. Priorwork has demonstrated thatmodern LLMs capture relevant information about

meaningful skill chains [144, 7, 331]. Yet, in contrast to prior top-down LLM planning methods, we explore

a bottom-up approach to learning long-horizon tasks: by allowing our agent to iteratively sample skill

chains and practice their execution in the environment, we train more robust long-horizon task policies
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that achieve higher empirical success rates, particularly when generalizing to unseen environments (see

Section 8.4).

LLM Prompt Example

Predict the next skill from the following list:

Pick up the mug; Turn on the lamp; Put the

mug in the co�ee machine; ...

1: Pick up the mug.

2:

Figure 8.2: A shortened LLM prompt. See
the full prompt in Appendix F.1.2.

To sample next skills, we prompt the LLM with the cur-

rent skill repertoire and the chain of skills executed so far. For

example, if the agent has just completed “Pick up the mug”, we

prompt the LLMwith the list of skill annotations inZ and then

the following prompt: 1. Pick up the mug. 2._____ (see Fig-

ure 8.2). The LLM then proposes the next skill by generating

text following the prompt. We then map this predicted next

skill string back to the set of existing skills in Z by �nding the

nearest neighbor of Z to the proposed skill annotation in the

embedding space of a pre-trained sentence embedding model [298]. To encourage diversity in the prac-

ticed skill chains, we repeat this process N times and sample the true next skill from the distribution of

LLM-assigned token likelihoods. Finally, if the sampled skill is successfully executed, we repeat the same

process for sampling the following skill.∗

Learning new skills. Once an episode concludes, either because a skill times out or because a de�ned

maximum skill chain length is reached, we add the collected data back into the replay bu�er with a sparse

reward of 1 for every completed skill. For example, if an attempted skill chain contains a total of 3 skills,

then the maximum return of the entire trajectory is 3. We then continue policy training via the same

o�ine RL algorithm used to learn the primitive skills—in our case, IQL [171].

Finally, to maximize data e�ciency, we relabel the language instructions for the collected episode upon

adding it to the replay bu�er. Speci�cally, following prior work [404], we aggregate consecutive skills

into composite skill instructions using the same LLM as for skill sampling. We then add the composite

∗Note that we do not treat invalid LLM skill chain proposals, like asking the agent to “put keys in a safe” when it has not
yet picked any keys up, in a special manner. If the proposal is poor, the agent will fail and the value of the skill will drop with
training, making it unlikely to sample the skill chain again.
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skill instruction and associated experience to the replay bu�er and also add it to our skill repertoire for

continued bootstrapping. We store new trajectories with both their lowest level annotations and the LLM-

generated composite instructions so the agent can �ne-tune its base skills while learning longer-horizon

skill chains online. To ensure the agent does not forget its initial skill repertoire, we sample data from the

o�ine dataset DL with new data at equal proportions in batch.

Algorithm 2 BOSS Pseudocode.

1: Train policy π on initial skill repertoire

2: for skill bootstrapping episode do

3: Sample initial skill z and execute

4: while not episode timeout do

5: Sample next skill from LLM and execute

6: Construct composite skill and add to repertoire

7: Update policy π

In sum, we iterate through these three

steps to train a policy during the skill boot-

strapping phase: (1) Sampling initial skills

using the value function. (2) Sampling next

skills by prompting the LLM with skills exe-

cuted so far. (3) Adding learned skills to the

skill library and training on collected agent

experience. Algorithm 2 presents a brief

overview. The implementation details can be

found in Appendix F.2 and Algorithm 8 in Ap-

pendix describes the full algorithm.

8.4 Experimental Evaluation

The goal of our experiments is to test BOSS’s ability to acquire long-horizon, complex, and meaningful be-

haviors. We compare to unsupervised RL and zero-shot planningmethods in two challenging, image-based

control environments: solving household tasks in the ALFRED simulator [328] and kitchen manipulation

tasks with a real-world Jaco robot arm. Concretely, we aim to answer the following questions: (1) Can

BOSS learn a rich repertoire of useful skills during skill bootstrapping? (2) How do BOSS’s acquired skills
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"walk to the coffee
maker on the right"

"wash the mug in the sink"
"put the clean mug
in the coffee maker"

"pick up the mug and go
back to the coffee maker"

"pick up the dirty mug
from the coffee maker" "turn and walk to the sink"

visual navigation
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state changes

visual navigationobject interaction

object interaction

Goal: "Rinse off a mug and place it in the coffee maker"
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(a) ALFRED benchmark. (b) Real world Jaco arm setup.

Figure 8.3: Environments. (a) The ALFRED environment is a benchmark for learning agents that can
follow natural language instructions to ful�ll household tasks. This illustration was drawn from Shridhar
et al. [328] with permission. (b) Real-world Jaco arm: Our real-world kitchen manipulation tabletop
environment based on RGB image inputs.

compare to skills learned by unsupervised RL methods? (3) Can BOSS directly be applied on real robot

hardware?

8.4.1 Experimental Setup

ALFRED Environment. We test our approach in the ALFRED simulator [328] (see Figure 8.3a), since its

100+ �oorplans with many interactable objects provide a rich environment for learning numberous long-

horizon household tasks. We leverage a modi�ed version of the ALFRED simulator [405] that allows for

online RL interactions via a gym interface with 300× 300 egocentric RGB image observations. The action

space consists of 12 discrete action choices (e.g. turn left, look up, pick up object), along with 82 discrete

object types, �rst proposed by Pashevich, Schmid, and Sun [273]. To train the skills in our initial skill

library, we leverage the ALFRED dataset of 73k primitive skill demonstrations with language instructions.

For bootstrapping we use four unseen �oorplans. In each �oorplan we de�ne 10 evaluation tasks, each of

which requires 2 to 8 primitive skills to complete.
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Real-Robot Kitchen Manipulation. We evaluate our method with a real-robot manipulation setup

inwhich a Kinova Jaco 2 robot arm needs to solve stylized kitchen tasks in a table-top environment (see Fig-

ure 8.3b). The observations consist of concatenated RGB images from a third-person and a wrist-mounted

camera. The robot is controlled with continuous end-e�ector displacements and discrete gripper open/s-

tay/close commands at a frequency of 10Hz. To train the initial skills, we collect a dataset of 6k language-

annotated primitive skill demonstrations via human teleoperation. We perform bootstrapping and evaluate

the agents in a table setup with unseen object arrangements.

Training and Evaluation Procedure. We equip the policy with the initial primitive skill library

by training it for 150 epochs on the respective pre-collected demonstration datasets using IQL [171] (see

Section 8.3.1). We then perform 500,000 and 15,000 steps (∼17 min of robot interaction time) of online

skill bootstrapping in the respective unseen eval environments of ALFRED and the real robot setup. Note

that for ALFRED we train separate agents for each �oorplan, mimicking a scenario in which an agent

is dropped into a new household and acquires skills with minimal supervision. After bootstrapping, we

evaluate the trained agents zero-shot on the held-out evaluation tasks by conditioning the policy on the

respective language instruction. To perform well in this evaluation setting, an agent needs to acquire a

large number of useful skills during online environment interactions.

Baselines. We compare BOSS to prior works that can learn a wide range of skills with minimal su-

pervision: (1) unsupervised RL approaches that, like BOSS, learn from environment interactions without

additional feedback and (2) large-language model based planners, that leverage the knowledge captured

in large pre-trained language models to “bootstrap” given skill libraries into long-horizon behaviors. Con-

cretely, we are comparing to the following approaches:

• CIC [178]: SoTA method on the unsupervised RL benchmark [179], expands its skill library with a

contrastive alignment objective during bootstrapping. For fair comparison, we pre-train CIC’s policy

on the same primitive skill dataset used in BOSS before unsupervised bootstrapping.
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• SayCan [7]: Leverages a pre-trained LLM to break down a given task into step-by-step instructions,

i.e., “primitive skills”, by ranking skills from a given library. We implement SayCan using the same

primitive skill policy pre-trained via o�ine RL as in BOSS. We use the same LLM as our method, and

adapt SayCan’s LLM prompt for our environment. Notably, SayCan and similar LLM planning work

have no mechanism for �ne-tuning to new environments.

• SayCan+P: To evaluate the e�ects of online bootstrapping vs. top-down LLM planning in isolation,

we evaluate a SayCan variant that uses our LLM-based skill proposal mechanism, which leverages

the LLM to generate step-by-step instructions in place of SayCan’s original skill ranking method. We

found this to perform better than standard SayCan in our evaluation.

• SayCan+PF: SayCan+P on policies �ne-tuned in the target environments for the same number of

steps as BOSS by sampling single skills with the value function and learning to execute them. This

compares the e�ect of BOSS learning to chain skills in the target environments.

Additionally, we evaluate (1) an Oracle that �netunes the pre-trained primitive skill policy directly on the

target tasks, serving as an upper bound, and (2) a pre-trained primitive skill policy without any bootstrap-

ping (No Bootstrap), serving as a performance lower bound.

All methods utilize the same base primitive skill policy pre-trained on the same demonstration data. We

implement a transformer policy and critic architecture based on Pashevich, Schmid, and Sun [273] trained

with the IQL algorithm [171]. All results reported are inter-quartile means and standard deviations over 5

seeds [4]. Finally, Saycan and BOSS all use the LLaMA-13b open-source, 13-billion parameter LLM [352].

For more baseline implementation and training details, see Appendix F.2.

8.4.2 BOSS Bootstrapping Learns Useful Skills
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Table 8.1: Inter-quartile means (IQMs) and standard deviations
of oracle-normalized returns, i.e., number of solved subtasks,
broken down by task length, across the ALFRED evaluation
tasks. We also report oracle-normalized success rate in the last
column. We do not report results for length 6 and 8 tasks since
not even the oracle was able to learn these.

Returns by Evaluation Task Length Average

Method Length 2 Length 3 Length 4 Return Success

No Bootstrap 0.03 +- 0.02 0.05 +- 0.07 0.08 +- 0.09 0.03 +- 0.01 0.00 +- 0.00

CIC [178] 0.02 +- 0.02 0.25 +- 0.08 0.18 +- 0.07 0.11 +- 0.01 0.00 +- 0.00

SayCan [7] 0.06 +- 0.02 0.14 +- 0.00 0.10 +- 0.12 0.06 +- 0.00 0.00 +- 0.00

SayCan + P 0.08 +- 0.04 0.28 +- 0.00 0.20 +- 0.15 0.12 +- 0.01 0.00 +- 0.00

SayCan + PF 0.64 +- 0.06 0.49 +- 0.20 0.59 +- 0.02 0.57 +- 0.05 0.00 +- 0.00

BOSS (ours) 0.47 +- 0.12 0.59 +- 0.13 0.81 +- 0.13 0.57 +- 0.06 0.57 +- 0.14

ALFRED. Overall, BOSS achieves supe-

rior performance to all non-oracle base-

lines, with better oracle-normalized re-

turn at longer, length 3 and 4 tasks

than the best baselines, and BOSS is the

only method to achieve non-zero suc-

cess rates across all lengths of tasks.

From Table 8.1, the gap between BOSS

and best baselines is largest on the

length 4 tasks, indicating the bene�t of

BOSS’ LLM-guided skill bootstrapping in learning di�cult, longer-horizon tasks without task supervision.

CIC can make some progress in some length 3 and 4 tasks, but its contrastive objective generally fails to

�netune the primitive skills into meaningful long-horizon skills. Saycan+P performs better than Saycan,

indicating that our proposal mechanism better extracts a more meaningful distribution of skills from an

LLM, but even Saycan+P greatly falls short of BOSS’ performance as it is not robust to execution failures

incurred from directly using the pre-trained policy in unseen �oor plans. Saycan+PF performs better as it

�rst �ne-tunes its policies, but it still achieves a 0% success rate compared to BOSS’ 57%. Additional anal-

yses we perform in Appendix F.3.1 demonstrates that in SayCan+P, 95.8% of all unsuccessful SayCan+P

trajectories are caused by policy execution failures. SayCan+PF is only slightly better: 95.0% are caused

by policy execution failures, indicating that naïve �ne-tuning in the target environment is ine�ective for

solving long-horizon tasks. Since BOSS learns to �netune individual primitive skills and transition between

skills using a closed-loop policy, it performs much better on complex, long-horizon language-speci�ed

tasks in unseen environments.
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Put sliced tomato in 

microwave

Wash and store 

lettuce

Cut the apple with a 

knife

Figure 8.4: Left: The number of subtasks in skills executed during skill bootstrapping by BOSS in one of
the unseen ALFRED �oorplans. BOSS progressively learns longer skill chains throughout the course of
training. Right: The number of newly acquired skills by BOSS throughout training.

We display qualitative examples of a length 2 and 3 task in appendix Figure F.4, where we can see that

BOSS successfully completes the tasks whereas Saycan su�ers from execution failures, getting stuck while

attempting to manipulate objects, and CIC navigates around performing random behaviors (Figure F.4a)

or gets stuck navigating around objects (Figure F.4b). We show qualitative examples of learned skills in

Figure 8.5 and perform additional experiments and analysis in Appendix F.3.1.

Table 8.2: Success rates, split by task
length, across the 4 robot eval tasks in an
unseen table arrangement.

Evaluation Task Length

Method Length 2 Length 4

ProgPrompt [331] 0.65 +- 0.15 0.00 +- 0.00

BOSS (ours) 0.50 +- 0.30 0.15 +- 0.05

Real Robot. In our real world experiments, we compare

BOSS to ProgPrompt [331], a similar LLM planning method

to Saycan that has been extensively evaluated on real-world

tabletop robot manipulation environments similar to ours.

We also augment it with prompt examples similar to ours and

our skill proposal mechanism. Here, we evaluate on 4 tasks,

2 of length 2 and 2 of length 4 after performing bootstrap-

ping. Results in Table 8.2 demonstrate that both methods perform similarly on length 2 tasks, but only

BOSS achieves nonzero success rate on more di�cult length 4 tasks as it is able to learn to chain together

long-horizon skills in the new environment. See Appendix F.3.2 for more detailed task information.
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(1) Go to the area between 

the cabinets and the toilet


(2) Pick up the empty toilet 

paper tube behind the 

toilet brush


(3) Place the toilet paper tube 

upright to the left of the 

full toilet paper roll


(4) Close the cabinet door

Put the empty toilet paper 

tube next to the full toilet 

paper roll.

(1) Take the apple on the right 

from the sink


(2) Pick up the knife from the 

counter


(3) Cut the apple into pieces


(4) Put the apple on the right 

of the statue and in front 

of the salt

Cut the apple and put it on 

the right of the statue.

(1) Pick up the pillow off of 

the seat of the blue chair


(2) Put the pillow vertically on 

the couch to the left of the 

newspaper

Put the pillow on the couch 

next to the newspaper.

(1) Pick up the white pencil 

on the desk


(2) Place the white pencil on 

the desk near the books


(3) Pick up the books from 

the bed


(4) Turn on the lamp

Place the white pencil on the 

desk next to the books and 

then look at the book from 


the bed under the lamp light.

Figure 8.5: Example skill chains (light gray) and new skill summaries (dark grey) learned by BOSS during
skill bootstrapping. LLM-guidance ensures meaningful skill chains and summaries.

8.4.2.1 Ablation Studies

To better analyze the e�ect of our core contribution, the usage of LLM guidance during skill bootstrapping,

we compare to the following variants of our approach:

• BOSS-OPT1: BOSS bootstrapping with a weaker 1-billion parameter LLM, OPT-1 [408].

• BOSS-Rand: An ablation of our approach BOSS that uses no LLM guidance during skill bootstrapping

and simply selects the next skill at random from the current skill library.

Table 8.3: ALFRED ablation returns.

Evaluation Task Length

Method Length 2 Length 3 Length 4 Average

BOSS (ours) 0.47 +- 0.12 0.59 +- 0.13 0.81 +- 0.13 0.57 +- 0.06

BOSS-OPT1 0.39 +- 0.08 0.36 +- 0.07 0.56 +- 0.08 0.49 +- 0.07

BOSS-Rand 0.32 +- 0.03 0.29 +- 0.11 0.61 +- 0.16 0.43 +- 0.06

We report results in Table 8.3. The analysis shows the

importance of accurate LLM guidance during skill bootstrap-

ping for learning useful skills. Using an LLM with lower

performance (OPT1) results in degraded overall performance.

Yet, bootstrapping without any LLM guidance performs even

worse. Interestingly, the performance gap between BOSS and

its variants widens for longer task lengths. Intuitively, the longer the task, the more possible other, less

useful tasks of the same length could be learned by the agent during bootstrapping. Thus, particularly for

long tasks accurate LLM guidance is helpful.
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Figure 8.6: Skill library
size during bootstrap-
ping.

To further analyze this, we compare the sizes of the learned skill libraries

between BOSS bootstrapped with LLaMA-13B guidance vs. random skill selec-

tion (BOSS-Rand) in Figure 8.6. Perhaps surprisingly, the random skill chaining

ablation learns more skills than BOSS – its skill library grows faster during boot-

strapping. Yet, Table 8.3 shows that it has lower performance. This indicates, that

while BOSS-Rand learns many skills, it learns lessmeaningful skills. A qualitative

analysis supports this intuition: many of the learned skills contain repetitions and

meaningless skill chains. This underlines the importance of LLM guidance during

skill bootstrapping. Furthermore, the positive correlation between the powerfulness of the used guidance

LLM (1B→ 13B parameters) and the evaluation task performance suggests that future, evenmore powerful

LLMs can lead to even better skill bootstrapping.

8.5 Discussion

We propose BOSS, an approach that learns a diverse set of long-horizon tasks with minimal supervision via

LLM-guided skill bootstrapping. Starting from an initial library of skills, BOSS acquires new behaviors by

practicing to chain skills while using LLMs to guide skill selection. We demonstrate in a complex household

simulator and real robot manipulation tasks that BOSS can learn more useful skills during bootstrapping

than prior methods.

Limitations. While BOSS learns a large repertoire of skills with minimal supervision, it still has

limitations that prevent it from truly ful�lling the vision of agents autonomously acquiring skills in new

environments. BOSS requires environment resets between bootstrapping episodes, which are currently

performed by a human in our real world experiments. Also, we require success detection for each of the

primitive skills during bootstrapping. Future research can investigate using advances in reset-free RL [120,

321] to approach the goal of truly autonomous skill learning. Furthermore, BOSS greedily proposes new
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skill chains one skill at a time, this greedy skill chaining process may not be optimal for generating con-

sistent long-horizon behaviors beyond a certain length. In future work, we plan to explore mechanisms to

propose long-horizon tasks that are broken down to individual skills in conjunction with the greedy skill

chaining of BOSS. Finally, BOSS is currently limited to skills that are combinations of skills in its initial

skill library. Extending our work with unsupervised RL [320, 178] techniques for learning new low-level

skills is an exciting direction for future work.
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Chapter 9

RoboCLIP:One Demonstration is Enough to Learn Robot Policies

Environment

S3D-v

S3D
Policy

Task Descriptor
(video or text)

Similarity

Every
timestep

End of the 
episode

“Robot opening drawer”

Figure 9.1: RoboCLIP: Method Overview. A Pretrained Video-and-Language Model is used to gener-
ate rewards via the similarity score between the encoding of an episode of interaction of an agent in its
environment, bzv with the encoding of a task speci�er bzd such as a textual description of the task or a
video demonstrating a successful trajectory. The similarity score between the latent vectors is provided as
reward to the agent.

9.1 Introduction

Sequential decision-making problems typically require signi�cant human supervision and data. In the

context of online reinforcement learning [339], this manifests in the design of good reward functions that

map transitions to scalar rewards [11, 125]. Extant approaches to manual reward function de�nition are

not very principled and de�ning rewards for complex long-horizon problems is often an art requiring sig-

ni�cant human expertise. Additionally, evaluating reward functions often requires knowledge of the true
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state of the environment. For example, imagine a simple scenario where the agent must learn to lift an

object o� the ground. Here, a reward useful for task success would be proportional to the height of the

object from the ground — a quantity non-trivial to obtain without full state information. Thus, signi�cant

e�ort has been expounded in developing methods that can learn reward functions either explicitly or im-

plicitly from demonstrations, i.e., imitation learning [287, 262, 1, 421]. With these methods, agent policies

can either be directly extracted from the demonstrations or trained to optimize rewards functions learned

from them.

Imitation learning (IL), however, only somewhat alleviates the need for expert human intervention.

First, instead of designing complex reward functions, expert supervision is needed to collect massive

datasets such as RT-1 [38], Bridge Dataset [90], D4RL [104], or Robonet [74]. The performance of imitation

learning algorithms and their ability to generalize hinges on the coverage and size of data [174, 175], mak-

ing the collection of large datasets imperative. Second and most importantly, the interface for collecting

demonstrations for IL is tedious, requiring expert robot operators to collect thousands of demonstrations.

On the contrary, a more intuitive way to de�ne rewards would be in the form of a textual description (e.g.,

“robot grasping object”), or in the form of a naturalistic video demonstration of the task performed by a

human actor in an environment separate from the robotic environment. For example, demonstrating to a

robot how to open a cabinet door in one’s own kitchen is more naturalistic than collecting many thousands

of trajectories via teleoperation in the target robotic environment.

Thus, there exists an unmet need for IL algorithms that 1) require very few demonstrations and 2) allow

for a natural interface for providing these demonstrations. For instance, algorithms that can e�ectively

learn from language instructions or human demonstrations without the need for full environment state

information. Our key insight is that by leveraging Video-and-LanguageModels (VLMs)—which are already

pretrained on large amount of video demonstration and language pairs—we do not need to rely on large-

scale and in-domain datasets. Instead, by harnessing the power of VLM embeddings, we treat themismatch
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between a single instruction’s embedding (provided as a language command or a video demonstration) and

the embedding of the video of the current policy’s rollout as a proxy reward that will guide the policy

towards the desired instruction.

To this end, we present RoboCLIP, an imitation learning algorithm that learns and optimizes a reward

function based on a single language or video demonstration. The backbone model used in RoboCLIP is

S3D [377] trained on the Howto100M dataset [242], which consists of short clips of humans performing

activities with textual descriptions of the activities. These videos typically consist of a variety of camera

angles, actors, lighting conditions, and backgrounds. We hypothesize that VLMs trained on such diverse

videos are invariant to these extraneous factors and generate an actor-agnostic semantically-meaningful

representation for a video, allowing them to generalize to unseen robotic environments.

We present an overview of RoboCLIP in Figure 9.1. RoboCLIP computes a similarity score between

videos of online agent experience with a task descriptor, i.e., a text description of the task or a single

human demonstration video, to generate trajectory-level rewards to train the agent. We evaluate RoboCLIP

on the Metaworld Environment suite [393] and on the Franka Kitchen Environment [118], and �nd that

policies obtained by pretraining on the RoboCLIP reward result in 2− 3× higher zero-shot task success in

comparison to state-of-the-art imitation learning baselines. Additionally, these rewards require no experts

for speci�cation and can be generated using naturalistic de�nitions like natural language task descriptions

and human demonstrations.

9.2 Related Work

Learning from Human Feedback. Learning from demonstrations is a long-studied problem that at-

tempts to learn a policy from a dataset of expert demonstrations. Imitation learning (IL) methods, such as

those based on behavioral cloning [287], formulate the problem as a supervised learning over state-action
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pairs and typically rely on large datasets of expert-collected trajectories directly demonstrating how to per-

form the target task [38, 219]. However, these large demonstration datasets are often expensive to collect.

Another IL strategy is inverse RL, i.e., directly learning a reward function from the demonstrations [262,

1, 421, 100]. Inverse RL algorithms are typically di�cult to apply when state and action spaces are high-

dimensional. Methods such as GAIL [138], AIRL [105], or VICE [106] partially address these issues by

assigning rewards which are proportional to the probability of a given state being from the demonstration

set or a valid goal state as estimated by a learned discriminator network. However these discriminator

networks still require many demonstrations or goal states to train to e�ectively distinguish between states

from agent-collected experience and demonstration or goal states. On the other hand, RoboCLIP’s use of

pretrained video-and-language models allows us to train agents that learn to perform target tasks with

just one demonstration in the form of a video or a language description. Other works instead use human

feedback in the form of pairwise comparisons or rankings to learn preference reward functions [59, 304, 30,

248, 31, 41, 29, 181, 134]. These preferences may require less human e�ort to obtain than reward functions,

e.g., through querying humans to simply rank recent trajectories. Yet individual trajectory preferences

convey little information on their own (less than dense reward functions) and therefore humans need to

respond to many preference queries for the agent to learn useful reward functions. In contrast, RoboCLIP

is able to extract useful rewards from a single demonstration or single language instruction.

Large Vision and Language Models as Reward Functions. Kwon et al. [177] and Hu and Sadigh

[143] propose using large language models (LLMs) for designing and regularizing reward functions that

capture human preferences. These works study the reward design problem in text-based games such as

negotiations or card games, and thus are not grounded in the physical world. RoboCLIP instead lever-

ages video-and-language models to assess if video demonstrations of robot policies align with an expert

demonstration. Prior work has demonstrated that video models can be used as reward functions. For ex-

ample, Chen, Nair, and Finn [50] learn a visual reward function using human data and then utilize this
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reward function for visual model-based control of a robot. However, they require training the reward

model on paired human and robot data from the deployment environment. We demonstrate that this

paired data assumption can be relaxed by utilizing large-scale vision-language models pretrained on large

corpora of human-generated data. The most well-known of these is CLIP [289], which is trained on pairs

of images and language descriptions scraped from the internet. While CLIP is trained only on images,

video-language-models (VLMs) trained on videos of humans performing daily tasks such as S3D [377] or

XCLIP [265] are also widely available. These models utilize language descriptions while training to su-

pervise their visual understanding so that semantically similar vision inputs are embedded close together

in a shared vector space. A series of recent works demonstrate that these VLMs can produce useful re-

wards for agent learning. Fan et al. [98] �netune CLIP on YouTube videos of people playing Minecraft

and demonstrate that the �netuned CLIP model can be used as a language-conditioned reward function to

train an agent. DECKARD [267] then uses the �ne-tuned reward function of Fan et al. [98] to reward an

agent for completing tasks proposed by a large-language model and abstract world model. PAFF [109] uses

a �ne-tuned CLIP model to align videos of policy rollouts with a �xed set of language skills and relabel

experience with the best-aligned language label. We demonstrate that videos and multi-modal task speci-

�cations can be utilized to learn reward functions allowing for training agents. Additionally, we present a

method to test the alignment of pretrained VLMs with deployment environments.

9.3 Method

Overview. RoboCLIP utilizes pretrained video-and-language models to generate rewards for online RL

agents. This is done by providing a sparse reward to the agent at the end of the trajectory which describes

the similarity of the agent’s behavior to that of the demonstration. We utilize video-and-language mod-

els as they provide the �exibility of de�ning the task in terms of natural language descriptions or video
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demonstrations sourced either from the target robotic domain or other more naturalistic domains like hu-

man actors demonstrating the target task in their own environment. Thus, a demonstration (textual or

video) and the video of an episode of robotic interaction are embedded into the semantically meaning-

ful latent space of S3D [377], a video-and-language model pretrained on diverse videos of human actors

performing everyday tasks taken from the HowTo100M dataset [242]. The two vectors are subsequently

multiplied using a scalar product generating a similarity score between the 2 vectors. This similarity score

(without scaling) is returned to the agent as a reward for the episode.

Notation. We formulate the problem in the manner of a POMDP (Partially Observable Markov Decision

Process) with (O, S , A, ϕ, θ, r, T , γ) representing an observation space O, state space S , action space A,

transition function ϕ, emission function θ, reward function r, time horizon T , and discount factor γ. An

agent in state bst takes an action bat and consequently causes a transition in the environment through

ϕ(bst+1 | bst, bat). The agent receives the next state bst+1 and reward rt = r(bot, bat) calculated using

the observation bot. The goal of the agent is to learn a policy bπ which maximizes the expected discounted

sum of rewards, i.e.,
∑T

t=0 γ
trt. Note that all of our baselines utilize the true state for reward generation

and for policy learning. To examine the e�ect of using a video-based reward, we also operate our policy

on the state space while using the pixel observations for reward generation. Thus, rt uses bot while bπ

uses bst for RoboCLIP while for all other baselines, both rt and bπ utilize bst. This of course is unfair to

our method, but we �nd that in spite of the advantage provided to the baselines, RoboCLIP rewards still

generate higher zero-shot success.

Reward Generation. During the pretraining phase, we supply the RoboCLIP reward to the agent in a

sparse manner at the end of each episode. This is done by storing the video of an episode of the interaction

of the agent with the environment into a bu�er as seen in Figure 9.1. A sequence of observations of length

128 are saved in a bu�er corresponding to the length of the episode. S3D is trained on videos length 32
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frames and therefore the episode video is subsequently downsampled to result in a video of length T = 32.

The video is subsequently center-cropped to result in frames of size (250, 250). This is done to ensure that

the episode video is preprocessed to match the speci�cations of the HowTo100M preprocessing used to

train the S3D model. Thus the tensor of a sequence of T observations bo0:T is encoded as the latent video

vector bzv using

bzv = S3Dvideo-encoder(bo0:T ) (9.1)

The task speci�cation is also encoded into the same space. If it is de�ned using natural language, the

language encoder in S3D encodes a sequence ofK textual tokens bd0:K into the latent space using:

bzd = S3Dtext-encoder(bd0:K) (9.2)

If the task description is in the form of a video of length K , then we preprocess and encode it using the

video-encoder in S3D just as in Equation (9.1). For intermediate timesteps, i.e., timesteps other than the

�nal one in an episode, the reward supplied to the agent is zero. Subsequently, at the end of the episode,

the similarity score between the encoded task descriptor bzd and the encoded video of the episode bzv is

used as reward rRoboCLIP(T ). Thus the reward is:

rRoboCLIP(t) =







0, t ̸= T

bzd · bzv t = T

where bzd · bzv corresponds to the scalar product between vectors bzd and bzv .

Agent Training. Using rRoboCLIP de�ned above, we then train an agent online in the deployment en-

vironment with any standard reinforcement learning (RL) algorithm by labeling each agent experience

trajectory with rRoboCLIP after the agent collects it. In our paper, we train with PPO [311], an on-policy
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RL algorithm, however, RoboCLIP can also be applied to o�-policy algorithms. After training with this

reward, the agent can be zero-shot evaluated or �ne-tuned on true environment reward on the target task

in the deployment environment.

9.4 Experiments

We test out each of the hypotheses de�ned in Section 9.1 on simulated robotic environments. Speci�cally,

we ask the following questions:

1. Do existing pretrained VLMs semantically align with robotic manipulation environments?

2. Can we utilize natural language to generate reward functions?

3. Can we use videos of expert demonstrations to generate reward functions?

4. Can we use out-of-domain videos to generate reward functions?

5. Can we generate rewards using a combination of demonstration and natural language?

6. What aspects of our method are crucial for success?

We arrange this section to answer each of these questions. Both RoboCLIP and baselines utilize PPO [311]

for policy learning.

Baselines. We use 2 state-of-the-art methods in inverse reinforcement learning: GAIL, or Generative

Adversarial Imitation Learning [138] andAIRL or Adversarial Inverse Reinforcement Learning [105]. Both

of these methods attempt to learn reward functions from demonstrations provided to the agent. Sub-

sequently, they train an agent using this learned reward function to imitate the expert behavior. Both

methods receive a single demonstration, consistent with our approach of using a single video imitation.

However, since they both operate on the ground-truth environment state, we provide them with a trajec-

tory of states, instead of images, thereby providing them privileged state information that our method

does not receive.
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9.4.1 Domain Alignment

Pretrained vision models are often trained on a variety of human-centric activity data, such as Ego4D

[112]. Since we are interested in solving robotic tasks with view from third person perspectives, we uti-

lize the S3D [377] VLM pretrained on HowTo100M [242], a dataset of short third-person clips of humans

performing everyday activities. This dataset, however, contains no robotic manipulation data.
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Figure 9.2: RoboCLIP: Domain Alignment. We
perform a confusion matrix analysis on a subset of
the data on collected on Metaworld [393] environ-
ments by comparing the pair-wise similarities be-
tween the latent vectors of the strings describing
the videos and those of the videos. We �nd that
Metaworld is well-aligned with higher scores along
the diagonal than along the o�-diagonal elements.

To analyze the alignment of the VLM to di�er-

ent domains, we perform a confusion matrix analy-

sis using videos from Metaworld [393]. We collect 10

videos per task with varying values of true reward.

For each video, we also collect the true reward. We

then compute the RoboCLIP reward for each video

using VLM alignment between the textual descrip-

tion of the task and the video. We visualize the cor-

relations between the RoboCLIP and true rewards in

the form of an n × n matrix where entry (i, j) cor-

responds to the correlation between the true reward

and the RoboCLIP reward generated for the ith task

using the jth text description. As one can see, for a

given task, the highest correlation in the matrix is for the correct textual description. We visualize one such

similarity matrix in Figure 9.2 for Metaworld. We �nd that Metaworld seems to align well in the latent

space of the model with a more diagonal-heavy confusion matrix. The objects are all correctly identi�ed.
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Figure 9.3: RoboCLIP: Language Rewards. The pretrained VLM is used to generate rewards via the
similarity score of the encoding of an episode of interaction of an agent in its environment, bzv with the
encoding of a task speci�er bzd speci�ed in natural language. We use the strings, “robot closing black

box”, “robot closing green drawer” and “robot pushing red button” for conditioning for the 3 environments
respectively. We �nd that agents pretrained on these language-conditioned rewards outperform imitation
learning baselines like GAIL [138] and AIRL [105].

9.4.2 Language for Reward Generation

The most naturalistic way to de�ne a task is through natural language. We do this by generating a sparse

reward signal for the agent as described in Section 9.3: the reward for an episode is the similarity score be-

tween its encoded video and the encoded textual description of the expected behavior in the VLM’s latent

space. The reward is provided to the agent at the end of the episode. For RoboCLIP, GAIL, and AIRL, we

�rst pretrain the agents online with their respective reward functions and then perform �netuning with

the true task reward in the deployment environment. We perform this analysis on 3 Metaworld Environ-

ments: Drawer-Close, Door-Close and Button-Press. We use the textual descriptions, “robot closing

green drawer”, “robot closing black box”, and “robot pushing red button” for each environment, respectively.

Figure 9.3 plots returns on the target tasks while �netuning on the depoloyment environment after pre-

training (with the exception of the Dense Task Reward baseline). Our method outperforms the imitation

learning baselines with online exploration in terms of true task rewards in all environments. Additionally

our baselines utilize the full state information in the environment for reward generation where RoboCLIP
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Figure 9.4: RoboCLIP: In-Domain Videos. The pretrained VLM is used to generate rewards via the
similarity score of the encoding of an episode of interaction of an agent in its environment, bzv with
the encoding of a video demonstration of expert behavior in the same environment. The similarity score
between the latent vectors is provided as reward to the agent and is used to train online RL methods. We
study this setup in the Kettle, Hinge and Slide Tasks in the Franka Kitchen Environment [118]. We
�nd that policies trained on the RoboCLIP reward are able to learn to complete the task in all three setups
without any need for external rewards using just a single in-domain demonstration.

uses only the pixels to infer state. RoboCLIP also achieves more than double zero-shot rewards in all envi-

ronments — importantly, the RoboCLIP-trained agent is able to complete the tasks even before �netuning

on true task rewards.

9.4.3 In-Domain Videos for Reward Generation

Being able to use textual task descriptors for reward generation can only work in environments where

there is domain alignment between the pretrained model and the visual appearance of the environment.

Additionally, VLMs are largemodels oftenwith billions of parametersmaking it computationally expensive

to �ne tune for domain alignment. The most naturalistic way to de�ne a task in such a setting is in

the form a single demonstration in the robotic environment which can be collected using teleoperation.

We study how well this works in the Franka Kitchen [118] environment. We consider access to a single

demonstration per task whose video is used to generate rewards for online RL.

Quantitative Results. We measure the zero-shot task reward, which increases as the task object (i.e.,

Kettle, Slide and Hinge Cabinets) gets closer to its goal position. This reward does not depend on the

position of the end-e�ector, making the tasks di�cult. Figure 9.4 shows the baselines perform poorly as
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they generally do not interact with the target objects, while RoboCLIP is able to solve the task using the

reward generated using the video of a single demonstration.

Qualitative Results. We �nd that RoboCLIP allows for mimicking the “style” of the source demonstra-

tion, with idiosyncrasies of motion from the source demonstration generally transferring to the policy

generated. We �nd this to occur in the kitchen environment’s Slide and Hinge task as seen in Figure 9.5.

The �rst row of the sub�gures in Figure 9.5 are visualizations of the demonstration video used to condi-

tion the VLM for reward generation. The bottom rows correspond to the policies that are trained with the

generated rewards of RoboCLIP. As can be seen, the Slide demonstration consists of a wide circular arc

of motion. This is mimicked in the learned policy, although the agent misses the cabinet in the �rst swipe

and readjusts to make contact with the handle.

This e�ect is even more pronounced in the Hinge example where the source demonstration consists of

twirling wrist-rotational behavior, which is subsequently imitated by the learned policy. The downstream

policy misses the point of contact with the handle but instead uses the twirling motion to open the hinged

cabinet in an unorthodox manner by pushing near the hinge. We posit that the VLMs used in RoboCLIP

contain a rich latent space encoding these various motions, and so even if they cannot contain semantically

meaningful latent vectors in the Franka Kitchen environments due to domain mismatch, they are still able

to encode motion information allowing them to be used for RoboCLIP with a single demonstration video.

9.4.4 Out-of-Domain Videos for Reward Generation

Another natural way to de�ne a task is to demonstrate it yourself. To this end, we try to use demonstrations

of humans or animated characters acting in separate environments as task speci�cation.

For this, we utilize animated videos of a hand pushing a red button and opening a green drawer and a

real human video of opening a fridge door (see Figure 9.7). The animated videos are collected from stock

image repositories and the human video is collected using a phone camera in our lab kitchen. Using the
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Figure 9.5: RoboCLIP: Imitation Analysis. The �rst row in each sub�gure shows the visualizations of
the demonstration video used for reward generation via the VLM. The second rows are videos taken from
policy recovered from training on the RoboCLIP reward generated using the videos in the �rst rows. The
quick swiping motion demonstrated in the Slide demonstration is mimicked well in the resultant policy
while the wrist-rotational "trick-shot" behavior in the demonstration for Hinge appears in the resultant
learned policy.

encodings of these video, we test out RoboCLIP in the 3 corresponding Metaworld tasks - Button-Press,

Drawer-Open and Door-Open. We follow the same setup as in Section 9.4.2 by �rst pretraining methods

with their respective reward functions and then �netuning in the deployment environment with target

task reward.

We compare the performance of the policy trained with these rewards to GAIL [138] and AIRL [105]

trained using the same single expert demonstration as RoboCLIP on these rewards with state information.

These methods are known to be data-hungry, requiring multiple demonstrations to train their reward

functions. Consequently, they perform much worse than RoboCLIP, even with 2-3x worse zero-shot task

performance, as can be seen from Figure 9.7.
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Figure 9.6: RoboCLIP: Finetuning Results. In harder environments, like Coffee-Push and
Faucet-Open, we �nd that RoboCLIP rewards do not solve the task completely. We test whether pro-
viding a single demonstration in the environment (using states and actions) is enough to �netune this
pretrained policy, a setup identical to our baselines. Thus, we pre-train on the RoboCLIP reward from
language and then �netune using a single robotic demonstration. This improves performance by ∼ 200%.
See videos on our website.

9.4.5 Multimodal Task Speci�cation
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Figure 9.8: RoboCLIP: Multimodal Tasks. We
study whether video demonstrations of expert
demonstrations can be used to de�ne tasks. We
use the latent embedding of a video demonstration
of a robot pushing a button and subtract from it
the embedding of the text "red button" and add to
it the embedding of the text "green drawer". This
modi�ed latent is used to generate rewards in the
Drawer-Close environment. We �nd that the pol-
icy trained using this modi�ed vector outperforms
string-only manipulation in the zero-shot setting.

Using videos to specify a task description is possi-

ble when either there is access to a robot for teleop-

eration as in Section 9.4.3 or a human can demon-

strate a behavior in their own environment as in Sec-

tion 9.4.4. When these are not the case, a viable al-

ternative is to utilizemultimodal demonstrations. For

example, consider a scenario where the required task

is to push a drawer to close it, but only a demon-

stration for pushing a button is available. In this sit-

uation, being able to edit the video of the o�-task

demonstration is useful. This way, one can direct the

agent to move its end-e�ectors to push the drawer

instead of the button.
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Figure 9.7: RoboCLIP: Out-of-Domain Videos. A Pretrained Video-and-Language Model is used to
generate rewards via the similarity score of the encoding of an episode of interaction of an agent in its
environment, bzv with the encoding of a task speci�er bzd in the form of a video of a human or an animated
character demonstrating a task in their own environment. The similarity score between the latent vectors
is provided as reward to the agent and is used to train online RL methods. The frames below the graphs
illustrate the video used for reward generation.

We do this by algebraically modifying the encoding of the video demonstration:

bzedited(push drawer) = bzvideo(push button)− bztext(button) + bztext(drawer) (9.3)

where bzedited(push drawer) is the vector used to generate rewards in the Drawer-Close environment,

bzvideo(push button) is the vector of the encoding of the video of the robot pushing a button, bztext(button)

is the encoding of the string button and bztext(drawer) is the encoding of the string drawer. As can be seen

in Figure 9.8, de�ning rewards in such a multimodal manner results in a higher zero-shot score than the

dense task reward and also pretraining on the string-only task reward.

9.4.6 Finetuning

In harder environments, and with rewards from OOD videos and language, the robot policy sometimes

approaches the target object, but fails to complete the task. Thus, we tested whether providing a single

demonstration (using states and actions) was enough to �netune this pretrained policy.
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Thus, for this experiment we �rst (1) pretrain on the RoboCLIP reward from human videos or language

descriptions and then (2) �netune using a single demonstration. As seen in Figure 9.6, we �nd that this

converts each of the partially successful policies into complete success and improves the rewards attained

by the policies by 200%. This �ne-tuning setup is especially useful in harder tasks like like Coffee-Push

and Faucet-Open and is competitive with state-of-the-art approaches like FISH [126].

9.4.7 Ablations
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Figure 9.9: RoboCLIP: Ablation Studies. We study
the e�ects of varying the number of demonstrations
provided to the agent can have on downstream re-
wards. We also study the e�ects of the training pro-
vided to the VLM on the downstream rewards. Fi-
nally, we study whether using CLIP trained on static
images provides good rewards for pretraining.

Finally, we investigate the e�ects of various design

decisions in RoboCLIP. First, we study the e�ect of

additional video demonstrations on agent perfor-

mance. We also examine the necessity of using a

pre-trained VLM. Recent works like RE3 [313, 357]

have shown that randomly initialized networks of-

ten contain useful image priors and can be used to

supply rewards to agents to encourage exploration.

Therefore, we test whether a randomly initialized

S3D VLM can supply useful pretraining rewards

in the in-domain video demonstration setup as in

Section 9.4.3. Finally, we study our choice of pre-

trained VLM.We examine whether a pretrained CLIP [289], which encodes single images instead of videos

and was trained on a di�erent dataset from S3D, can be used to generate rewards for task completion. In

this setup, we record the last image in an episode of interaction of the agent in its environment and feed
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it to CLIP trained on ImageNet [303] (i.e., not trained on videos). We then specify the task in natural lan-

guage and use the similarity between the embeddings of the textual description of the task and the �nal

image in the episode to generate a reward that is fed to the agent for online RL.

As seen in Figure 9.9, using a single video demonstration provides the best signal for pretraining. We

posit that our method performs worse when conditioned onmultiple demonstrations as the linear blending

of multiple video embeddings, which is used due to the scalar product, does not necessarily correspond

to the embedding of a successful trajectory. Crucially, we also �nd that using the static image version of

CLIP does not provide any useful signal for pretraining. The zero-shot performance is very poor, which

we posit is because it does not contain any information about the dynamics of motion and task completion

although it contains semantic meaning about objects in the frame. On the other hand, video contrastive

learning approaches do contain this information. This is further evidenced by the fact that inspite of

poor domain alignment between Franka Kitchen and the VLM, we �nd that encodings of in-domain video

demonstrations are still good for providing a pretraining reward signal to the agent.

9.5 Conclusion

Summary. We studied how to distill knowledge contained in large pretrained Video-and-Language-

Models into online RL agents by using them to generate rewards. We showed that our method, RoboCLIP,

can train robot policies using a single video demonstration or textual description of the task, depending on

howwell the domain aligns with the VLM.We further investigated alternative ways to use RoboCLIP, such

as using out-of-domain videos or multimodal demonstrations. Our results showed RoboCLIP outperforms

the baselines in various robotic environments.

Limitations and Broader Impact. Since we are using VLMs, the implicit biases within these large mod-

els could percolate into RL agents. Addressing such challenges is necessary, especially since it is unclear

what the form of biases in RL agents might look like. Currently, our method also faces the challenge of
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stable �netuning. We �nd that in some situations, �netuning on downstream task reward results in insta-

bilities as seen in the language conditioned reward curve in Figure 9.8. This instability is potentially due

to the scale of rewards provided to the agent. Rewards from the VLM are fairly low in absolute value and

subsequently, the normalized Q-values in PPO policies are out-of-shape when �netuned on task rewards.

In our experiments, this is not a big problem since the RoboCLIP reward is already su�cient to produce

policies that complete tasks without any deployment environment �netuning, but this will be essential to

solve when deploying this for longer horizon tasks.

Another limitation of our work is that there is no �xed length of pretraining. Our current method

involves pretraining for a �xed number of steps and then picking the best model according to the true

task reward. This is of course di�cult when deploying RoboCLIP in a real-world setup as a true reward

function is unavailable and a human must monitor the progress of the agent. We leave this for future

work.
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Chapter 10

ReWiND: Language-Guided Rewards Teach

Robot Policies without New Demonstrations
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Figure 10.1: Overview. We pre-train a policy and reward model from a small set of language-labeled
demos. Then, we solve unseen task variations via language-guided RL—without additional demos.

10.1 Introduction

A great teacher does not just tell you if you are right or wrong. Instead, they guide you by providing feed-

back when you make mistakes, highlighting progress as you learn something new, and adapting to how

you learn best. For deployed robots to learn new tasks in the wild, they need similarly intelligent teach-

ers. These teachers—in the form of robust reward models—should: (1) o�er dense, informative feedback,

especially during failures; (2) generalize their guidance to unseen tasks; and (3) remain robust to diverse

robot behaviors during its learning process. Our paper leverages these insights to develop reward models

capable of teaching robots unseen tasks.
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In this work, we introduce ReWiND (RewardsWithout New Demonstrations), a framework designed

to teach robots unseen tasks in a sample-e�cient manner using only a few grounding human demonstra-

tions for training tasks (see Figure 10.1). Typically, teaching robots involves large-scale imitation learn-

ing [39, 37, 32, 192], where human experts provide demonstrations for each new task. However, collecting

task-speci�c demonstrations is expensive and time-consuming. Reinforcement learning (RL) o�ers a more

autonomous alternative by using reward functions as teachers, allowing robots to learn through inter-

action. Yet, manually designing these reward functions demands substantial manual e�ort and domain-

speci�c expertise [341]. Recent progress in language-conditioned reward learning [334, 177, 143, 396, 223,

224, 195, 10, 368, 388] has aimed at addressing these challenges, but often assumes unrealistic conditions

such as availability of ground-truth states [177, 143, 396, 223, 224, 195], thousands of demonstrations [10],

or online training of reward models from scratch [368, 388], limiting their practical applicability.

ReWiND overcomes these challenges by instead assuming only a handful of demonstrations—e.g., �ve

per task—to enable real-world robot learning of unseen task variations. ReWiND �rst trains a language-

conditioned reward model from these demonstrations, then uses it to pre-train a language-conditioned

policy via o�ine RL. When deployed, ReWiND e�ciently �ne-tunes the policy on new task variations by

reward-labeling online interaction episodes.

Our core contribution is in designing ReWiND’s reward model to capture three key properties outlined

earlier: dense feedback, generalization, and robustness. First, to provide dense, informative feedback,

we design a cross-modal sequential aggregator that leverages pre-trained vision and language embeddings

to predict progress within demonstration videos. Progress prediction o�ers a stable, densely supervised

training signal that naturally translates into a dense reward function. We also introduce video rewinding

to generate failure trajectories from successful demonstrations, allowing ReWiND to provide dense reward

feedback even when the policy is making mistakes. Then, to ensure generalization across unseen tasks and

robustness to diverse behaviors, we incorporate targeted inductive biases into the cross-modal sequential
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aggregator architecture and supplement training with diverse robotics data from Open-X [67], enabling

the reward model to extrapolate to novel visual and linguistic scenarios.

We introduce reward metrics measuring the above properties on which ReWiND achieves 23-74%

relative improvements over reward learning baselines. Further, comprehensive success rate evaluations on

Metaworldmanipulation tasks and a real-world bimanual robot setup demonstrate ReWiNDbeats baselines

by 2X in simulation and improves real-world pre-trained policies by 5X.

10.2 Related Works

Learning Reward Functions. Prior work in reinforcement learning has proposed various methods for

learning reward functions. Examples include inverse RL [262, 1, 421, 100], where reward functions are

learned from demonstrations, or methods where rewards are implicitly learned from expert or goal state

distributions [138, 105, 106]. However, these works require new target-task demonstrations to reward

unseen tasks. ReWiND instead trains a general, language-conditioned reward function from an initial

demonstration set to reward unseen task variations without further demos.

Another line of work learns reward functions directly from human feedback in the form of comparisons

[60, 304, 29, 181, 134], reward sketches [45], preference rankings [248], scaled preferences [372], critiques

[69], corrections [22], interventions [170], and language [388]. While these feedback types may require

less human e�ort than demonstrations or manually written reward functions, these works still require

humans to provide extensive feedback for each unseen task.

Reward Generation with Pre-trained Models. Prior work has also explored using large pre-trained

models to generate reward functions instead of learning them from scratch. Some approaches use LLMs
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to generate language-conditioned rewards [177, 143, 396, 223, 224, 195], but they typically rely on ground-

truth state information that is di�cult to obtain in real-world settings. In contrast, ReWiND generates

rewards from just a task description and a policy execution video.

Other approaches use pre-trained vision models to derive rewards from visual observations [51, 71, 98,

267, 255, 334, 368, 10, 263, 386, 387, 220, 300, 264, 164]. Among these, RoboCLIP [334], LIV [223], VLC [10],

and GVL [224]—like ReWiND—reward unseen robot manipulation tasks directly from language without

additional target-task demos or online tuning. We show in Section 10.4.1 that these baselines underperform

ReWiND in rewarding policies in our limited-data setting. Most similar to ReWiND, Foundation Actor-

Critic (FAC) [390] enables e�cient RL from language via potential-based shaping rewards from a pre-

trained VLM. However, FAC depends on prede�ned policy priors (e.g., code-based primitives from LLMs),

whereas ReWiND learns them through o�ine RL on non-target tasks.

10.3 ReWiND: Learning Rewards Without New Demonstrations

We study the problem of learning unseen, language-speci�ed tasks in a target environment, formulated as

a Markov decision process (MDP). The target environment refers to the deployment scene (e.g., a robot

tabletop). We train a policy πθ(at | ot, z) that selects actions at based on images ot and language instruc-

tions z.∗ The policy is optimized to maximize rewards predicted by a learned reward function Rψ(o1:t, z),

which conditions on the frame sequence o1:t and instruction z to output per-timestep estimated rewards

r̂t. We assume access to a small demonstration datasetDdemos in the target environment containing 15–20

tasks with ∼5 demonstrations each. Following prior de�nitions of generalization [17, 108], we de�ne a

task as unseen if it requires a novel action sequence, its distribution of image observations has changed, or

needs a new language instruction.

∗Proprioception (e.g., end-e�ector positions) can also be included but is omitted here for simplicity.
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Figure 10.2: (a): We train a rewardmodelRψ(o1:t, z) on a small demonstration datasetDdemos and a curated
subset of Open-X, Dopen-x, augmented with LLM-generated instructions and video rewinding. Rψ(o1:t, z)
predicts video progress rewards r̂1:T from pre-trained embeddings of image observations o1:T and lan-
guage instructions z, and assigns 0 progress to misaligned video-language pairs. (b): We use the trained
Rψ(o1:t, z) to label Ddemos with rewards and pre-train a language-conditioned policy using o�ine RL.
(c): For an unseen task speci�ed by znew, we �ne-tune π with online rollouts and reward labels from
Rψ(o1:t, znew).

ReWiND consists of 3 phases (see Figure 10.2): (1) learning a reward function from limited target

environment demos, then (2) pre-training π with learned rewards on the demos, and �nally (3) using the

reward function and pre-trained policy to learn a new language-speci�ed task online.

10.3.1 Learning a Reward Function

Our primary objective for reward prediction is regressing directly to per-frame progress within an obser-

vation sequence o1:T conditioned on instruction z. Unlike prior methods using relative targets [386, 10],

our progress-based objective provides �xed targets that are more stable to train on, and translates directly

into a dense, [0, 1]-normalized reward for policy training. To ensure robustness against mismatched ob-

servations and instructions, we also sample unrelated observation sequences oother1:T and train Rψ(o1:t, z)

to predict zero progress. Our reward prediction loss is:

Lprogress(o1:T , z, o
other
1:T ) =

∑T
t=1(Rψ(o1:t, z)− t/T

︸︷︷︸

matched seq. progress

)2 +
∑T

t=1 Rψ(o
other
1:t , z)2

︸ ︷︷ ︸

mismatched seq. 0 progress

. (10.1)
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However, simply training a neural network Rψ(o1:t, z) on Lprogress(o1:T , z, oother1:T ) with a small set of

demonstrations is unlikely to ensure that it can train a policy on unseen tasks. Rψ(o1:t, z) should:

D1 Generalize to new tasks, i.e., new policy execution videos and instructions not in Ddemos.

D2 Produce rewards aligned with policy rollouts, not just successful demonstration videos.

D3 Be robust to input variations, i.e., di�erent ways to solve or specify the task.

To this end, we incorporate diverse o�-the-shelf data curated from the Open-X dataset [67] to help

with generalization (D1) and robustness (D3), perform targeted video and language augmentations for

better reward prediction and language input robustness (D2,D3), and make targeted network architecture

choices for generalization (D1). For a visual overview, see Figure 10.2a.

10.3.1.1 Incorporating Diverse Data (D1, D3)

To help Rψ(o1:t, z) generalize to tasks unseen in Ddemos (D1) and make it robust to diverse ways of exe-

cuting and specifying tasks (D3), we subsample the Open-X Dataset [67], denotedDopen-x. We speci�cally

select Open-X trajectories with object-centric language instructions, e.g., “pick coke can from fridge,” or

directional instructions, e.g., “drag the circle to the left of the star,” to help Rψ(o1:t, z) generalize to objects

and directions not contained in Ddemos. This dataset contains ∼356k trajectories with ∼59k unique task

strings. For detailed dataset information, see ??.

10.3.1.2 Video and Language Augmentation (D2, D3)

Given our datasets Ddemos and Dopen-x, we perform both video and language augmentations that help the

reward function accurately predict rewards for unsuccessful policy execution videos (D2) and be robust to

varied ways of specifying the task instructions z (D3). We call the video augmentation video rewind and

our text augmentation instruction generation.
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Video Rewind. Both Ddemos and Dopen-x con-

tain human demonstrations, which are assumed to be

successful and of high-quality. Training Rψ(o1:t, z)

on Lprogress(o1:T , z, oother1:T ) only using these successful

demonstrations, may result in Rψ(o1:t, z) over�tting

to these successful trajectories. However, during on-

line deployment, Rψ(o1:t, z) will likely encounter fail-

ure trajectories (unseen during training) which such an

over�t model may reward highly. This is undesirable and prior works attempt to address this issue by ex-

plicitly training their reward model on failed trajectories [10], but these trajectories add a great additional

burden on demonstrators to collect and must be added post-hoc to any existing dataset, making it harder

to scale.

Instead, we address this problem in a scalable manner by randomly rewinding videos. Consider a video

of a robot picking up a cup. If we rewind the video for a few frames right when the robot grabs the

cup, it now looks like one in which the robot attempted to grasp the cup and then dropped it.† By train-

ing Rψ(o1:t, z) to predict rewards corresponding to reverse progress on the rewound subsequence, it (1) is

trained on observation sequences mimicking failed policy rollouts that will occur during online RL, and (2)

learns to decrease reward when necessary. Thus rewinding helpsRψ(o1:t, z) reward a policy—not a human

demonstrator—whichwill help with online RL (D2). See Figure 10.3 for a visual example. Formally, rewind-

ing means sampling a random split point i within an observation sequence o1...oT , rewinding k (k is also

†Random rewinding may result in some physically implausible sequences. However, since they won’t appear during infer-
ence, the rewards produced by Rψ(o1:t, z) for such sequences should not a�ect online RL.
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sampled) frames, then appending those k frames to the end of the sequence to become o1...oi, oi−1, ..., oi−k.

The remaining frames from i+ 1 to T are then unused. Our video rewind training objective follows:

Lrewind(o1:T , z) =
i∑

t=1

(Rψ(o1:t, z)−
t

T
)2

︸ ︷︷ ︸

Loss for original trajectory until i

+
k∑

t=1

(Rψ([o1:i, oi−1:i−t], z)−
i− t

T
)2

︸ ︷︷ ︸

Rewound video for k frames from i−1

. (10.2)

Instruction Generation. We also generate 5-10 additional language instructions for each task in

Ddemos by prompting an LLM. This augmentation helps Rψ(o1:t, z) with input robustness to possible new

task instructions (D3). While training Rψ(o1:t, z), any time we sample an observation sequence o1:T ,

its instruction z is uniformly randomly sampled from all available matching instructions, generated or

original. We did not augment Dopen-x due to its instruction diversity.

10.3.1.3 Architecture (D1)

Due to the limited size of Ddemos, we carefully design the architecture for Rψ(o1:t, z) to maximize gener-

alization to new tasks (D1) while retaining the ability to optimize Lprogress(o1:T , z, oother1:T ) well.

Frozen Input Encoders. We use frozen image and language encoders as the backbone ofRψ(o1:t, z):

we useDINOv2 [269] for image encoding due to its strong object-centric representations and all-MiniLM-L12-v2 [298]

for instruction encoding due to its small embedding size (= 384). In Rψ(o1:t, z), we �rst encode images

and instructions: oembed
1:t = DINO(o1:t), zembed = MiniLM(z). Then, we train a small cross-modal sequential

aggregator transformer conditioned on (oembed
1:t , zembed) that learns to aggregate frozen language and image

embeddings to generate progress rewards r̂t directly (see Figure 10.2(a) in the “Reward Function” box).

Positional Embeddings. Finally, the cross-modal sequential aggregator’s transformer requires posi-

tional information about the frames to properly predict rewards (e.g., for distinguishing “pull” vs. “push”).
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However, if we naïvely add positional embeddings to each image, it can “cheat” by predicting progress us-

ing the positional embeddings. Therefore, similar to how Ma et al. [220] prompt an LLM with the position

of the �rst video frame, we add a positional embedding to the �rst image.

Reward Model Summary. In summary, ReWiND trains a reward functionRψ(o1:t, z) to predict task

progress, using data augmentation (video rewinding, instruction generation) and additional Open-X data

(Dopen-x) to improve generalization. Rψ(o1:t, z) combines pretrained vision and language encoders with a

lightweight cross-modal sequential aggregator that uses only �rst-frame positional embeddings. For full

implementation details, see Appendix G.1.1. The �nal objective is:

minψ E(o1:T ,z,o
other
1:T )∼Ddemos,Dopen-x

[
Lprogress(o1:T , z, o

other
1:T ) + Lrewind(o1:T , z)

]
. (10.3)

10.3.2 Policy Learning

Pre-training. After training Rψ(o1:t, z), we pre-train πθ(at | ot, z) on demonstrations Ddemos labeled

with rewards. This pre-training guides πθ(at | ot, z) toward reasonable behaviors during exploration,

even if downstream tasks di�er from those inDdemos. Given a trajectory with instruction z, {(ot, at)}T1 , we

assign rewards r̂t = Rψ(o1:t, z) at each timestep and add a success bonus to the �nal reward to encourage

reaching the goal despite possibly noisy reward signals:

r̂o�t = Rψ(o1:t, z) + rsuccess · 1[t = T ]. (10.4)

We then train πθ(at | ot, z) via o�ine RL using tuples (ot, at, r̂t, ot+1, z). We use IQL [171] as prior

work has demonstrated it works on real robots [360, 407, 405]. See Figure 10.2(b) for an overview.

Learning Online. To learn a new task online, ReWiND only requires a language description of the

task, znew. ReWiND rolls out π(a | ot, znew) and �ne-tunes it on rewards coming fromRψ(o1:t, znew). Like
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prior work [10, 386], we assume access to a success signal during online RL. We use this signal to give

rsuccess bonuses similar to in pre-training.‡ Our online rewards r̂on are:

r̂ont = Rψ(o1:t, z) + rsuccess · 1[success at t]. (10.5)

See full implementation details in Appendix G.1.1 and pseudocode in Algorithm 9.

10.4 Experiments

Our experiments aim to study the e�cacy of ReWiND as a reward learning pipeline, evaluate its ability to

train robots to learn new tasks e�ciently, and analyze its design choices and limitations. To this end, we

organize our experiments to answer the following empirical questions, in order:

(Q1) Rewards: How well do ReWiND rewards correlate with task progress and success?

(Q2) Policy Learning: Can ReWiND quickly train policies for new tasks?

(Q3) Ablations and Analysis: Which ReWiND design decisions are most signi�cant?

10.4.1 Q1: What Makes a Good Reward Function?

We repeat the desiderata from Section 10.3.1 that we set out to achieve with ReWiND: (1) generalization

to new tasks, (2) rewards aligned with videos from policy rollouts, and (3) robustness to diverse inputs. We

structure this section to demonstrate ReWiND’s ability to satisfy these criteria.

We compare ReWiND-learned rewards against all relevant reward learning baselines from Section 10.2:

LIV [221] is a robotics reward model pre-trained on EpicKitchens [73], we also �ne-tune LIV on Ddemos

(LIV-FT);RoboCLIP [334] uses a pre-trained video languagemodel, S3D [377] trained onHowTo100M [242],

‡Success bonuses can come from a human supervisor [214], learned function [106], or LLM [390]. Our experiments assume
a human supervisor because manual resets are required regardless. While we could threshold Rψ(o1:t, z) outputs to automati-
cally determine success, unseen evaluation task reward ranges can vary, rendering this approach ine�ective. Future work could
integrate ReWiND with methods reducing human resets [387, 120] and automatic success detectors for truly autonomous RL.
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Figure 10.4: Video-Language Reward Confusion Matrix. For each unseen task, we compute rewards
for all combinations of demonstration videos and language descriptions. ReWiND produces the most
diagonal-heavy confusion matrix, indicating strong alignment between unseen demos and instructions.
See Appendix G.4.1 for train task results.

to reward agents for language speci�ed tasks; Video-Language Critic (VLC) [10] �ne-tunes a VLM with

a sequential ranking objective to encourage frames later in the video to have higher rewards. We train

it on Ddemos; Generative Value Learning (GVL) [220] prompts a pre-trained Gemini LLM [345] with

shu�ed frames to predict per-frame progress.

We conduct our primary reward analysis using the simulated Meta-World benchmark [394] because

it enables e�cient collection of exemplar failed and partially successful rollout videos for analysis. Smaller-

scale real-world reward experiments, strongly alignedwith the results in simulation, are inAppendixG.4.3.

Ddemos here consists of 20 tasks with 5 expert demos each. For fair comparison, we include a variant of

ReWiND trained without Dopen-x (ReWiND w/o OXE). Results are evaluated on 17 unseen but related

Meta-World tasks. We average metrics across 5 rollouts per task.

Generalization. We�rst evaluate how e�ectively each rewardmodel distinguishes unseen tasks using

confusion matrices of unseen task videos versus language instructions (Figure 10.4). Ideally, a clear blue

diagonal indicates correct video-instruction pairs, with low (white) values elsewhere. ReWiND produces

clearest disparity between the diagonal and o�-diagonal elements, excelling even without OXE due to

architectural choices aimed at generalization, i.e., �rst frame positional encodings and frozen pre-trained

input embeddings.

Next, we evaluate how consistently rewards re�ect progress over time in successful, unseen demon-

strations. We report Pearson correlation (r) of each model’s reward against time, and Spearman’s rank
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Table 10.1: Combined Evaluation Metrics. Comparison of reward models across three axes: (1) Demo
Video Reward Alignment, (2) Policy Rollout Reward Ranking, and (3) Input Robustness.

Category Metric LIV LIV-FT RoboCLIP VLC GVL ReWiND w/o OXE ReWiND w/ OXE

(a) Demo Reward Alignment
r ↑ -0.03 0.55 0.01 0.64 0.52 0.67 0.83

ρ ↑ -0.04 0.55 -0.01 0.62 0.57 0.64 0.79

(b) Policy Rollout Ranking
Rew. Order ρ ↑ -0.32 0.47 0.00 -0.18 0.32 0.76 0.82

Rew. Di�. ↑ -0.16 0.26 0.06 -0.15 0.17 0.39 0.41

(c) Input Robustness
Avg. ρ ↑ 0.03 0.27 0.00 0.60 0.58 0.55 0.74

ρ Variance ↓ 0.08 0.28 0.00 0.00 0.01 0.03 0.04

correlation (ρ), which, unlike r, captures monotonicity regardless of linearity. As shown in Table 10.1(a),

ReWiND again outperforms all baselines—achieving a 30% relative improvement in r and 27% in ρ over

the best alternative (VLC).

Policy Rollout Reward Alignment. We also �nd that ReWiND can properly reward failed policy

rollouts, which is important for rewarding RL policies on unseen tasks. For each task, we train an SAC [122]

policy from scratch and use trajectories collected from various points of training to construct three eval-

uation video datasets: failure, near-success, and success containing failed trajectories, trajectories

where the policy was close to the goal state but did not succeed, and successful trajectories, respectively.

Each task has 2 trajectories of each type.

We evaluate each dataset’s relative alignment ranking (measured by Spearman’s ρ) with each reward

model. For example, for a given task, if the average reward for a failure video is 0.1, a near-success

video is 0.5, and success video is 0.9, then the rankings would be 1, 2, 3, respectively, where 3 corresponds

to the best ranking. Thus, ρ over the rankings tells us how often the videos are correctly ranked. We report

the ranking ρ in Table 10.1(b). We also report the average di�erence between rewards for success with

near-success and near-success with failure videos. Overall, likely due to video rewinding, ReWiND

has a relative 74% improvement in reward order and 58% improvement in reward di�erences over the

best baseline, LIV-FT. Additionally, we qualitatively demonstrate how these rankings translate into policy

rollout rewards in Appendix Figure G.1 by plotting per-frame reward curve predictions of ReWiND against

reward baselines for an unsuccessful policy rollout.
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Robustness to Varied Inputs. Finally, we demonstrate ReWiND’s robustness to diverse instructions.

For each evaluation task, we manually create three additional language instructions (without prior knowl-

edge of ReWiND’s performance), resulting in four total instructions per task. For example, “close the

door” is an original instruction, and we add “shut the door.” Each set of instructions is paired with a single

demonstration video, and we compare the reward models by measuring their average Spearman’s rank

correlation (ρ) and output variance across these instructions in Table 10.1(c). Higher variance indicates

lower robustnes. Again, ReWiND outperforms baselines, achieving the highest average correlation (0.74),

23% better than VLC, and near-zero variance, even without OXE training—likely aided by our instruc-

tion augmentation approach (Section 10.3.1.2). RoboCLIP and VLC show near-zero variance but achieve

signi�cantly lower correlation scores.

So far, our results demonstrate thatReWiNDsigni�cantly outperforms all image-language-conditioned

reward baselines in terms of generalization, rewarding policy rollouts, and input robustness. We

next demonstrate how these results translate into sample-e�cient policy learning.

10.4.2 Q2: Learning New Tasks with RL

0.00 0.25 0.50 0.75
Pre-train

Sparse
LIV-FT

VLC
ReWiND

IQM

Success Rate @ 100k

Figure 10.5: Meta-World �nal perfor-

mance. We plot inter-quartile means
(IQMs) of success rates after 100k envi-
ronment steps on 8 unseen tasks in Meta-
World. ReWiND achieves 79%.

Simulation. We use the Meta-World simulation bench-

mark [394], wherewe pre-train rewardmodels and policies on

20 tasks, each with 5 per-task demos collected from a scripted

policy. We evaluate on 8 unseen tasks in Meta-World, cho-

sen for reasonable initial policy rollout behaviors, across 3

seeds each. We compare ReWiND against the 2 language-

conditioned reward model baselines that performed best in

reward alignment (VLC) and policy rollout rankings (LIV-

FT) from the reward analysis in Section 10.4.1. We also compare against Sparse, which pre-trains and
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Figure 10.6: Real-robot RL. We present results on the Koch bimanual arms across in-distribution tasks
and visual, spatial, and linguistic generalization tasks. Online RL with ReWiND improves a pre-trained
policy by an absolute 56% across all �ve tasks.

�ne-tunes on only the sparse success reward bonus, and Pre-train, which pre-trains on sparse reward

and is evaluated zero-shot on new tasks. All baselines are image, proprioception (x, y, z, gripper), and

language conditioned. Each method uses the same policy pre-training and RL procedure as ReWiND as

outlined in Section 10.3.2, and is trained online for 100k timesteps. See Appendix G.2 for environment and

policy training details.

As recommended by Agarwal et al. [4], we report the interquartile mean (IQM) and 95% con�dence

intervals computed over all task success rates at 100k environment steps in Figure 10.5. Sparse reward

�ne-tuning and Pre-train (no �ne-tuning) result in near-zero success rates, highlighting the di�culty

of image-based new task learning under limited data. In fact, Sparse reward �ne-tuning, which relies

purely on a sparse success bonus, performs worse than Pre-train after �ne-tuning. Meanwhile, ReWiND

achieves an IQM success rate of 79%, a 97.5% improvement over the best baseline, VLC, demonstrating that

ReWiND e�ectively enables the policy to learn new tasks in Meta-World. These results are well-aligned

with our reward analysis in Section 10.4.1, demonstrating how they correlate with policy learning per-

formance. ReWiND is also more sample-e�cient at timesteps less than 100k; see extended discussion in

Appendix G.4.2 and sample e�ciency curves in Figure G.7i.

Real-World Robot Learning. We conduct real-world tabletop manipulation experiments with a bi-

manual Koch v1.1 robot arm setup [47]. We use 5 demos to train the reward function, but 10 for the policy,
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as we found policy learning to be a bottleneck on this di�cult robot embodiment. Across �ve tasks, we

demonstrate in Figure 10.6 that an hour of real-world reinforcement learning with ReWiND improves the

success rate over the base pre-trained policy from an average 12% success rate to 68%, a 5X improvement.

RL for an hour of real-world experiment time corresponds to 50k environment steps with our parallelized

codebase that trains the policy while an older checkpoint gathers data in the environment to avoid any

training wait time. We select diverse tasks that demonstrate real-world improvement based on generaliza-

tion metrics de�ned in prior work [17, 108] on: an in-distribution task, separate the blue and orange

cups; an in-distribution di�cult task, fold the blue towel; an unseen task in terms of large amounts of

visual clutter, open the red trash bin; an unseen task in terms of spatial relationships between objects

requiring new action sequences, put the orange cup on the red plate; and an unseen task in terms

of language input, put the fruit-colored object in the box. Overall, ReWiND enables real-world

reinforcement learning on unseen tasks without requiring new demonstrations, improving over the pre-

trained pre-trained policy, and outperforms the best baseline from simulation, VLC. See Appendix G.3.1

for real-world experiment details and Figure G.5 for policy rollout examples.

Q3: Ablations and Analysis. ReWiND’s ability to teach policies unseen tasks comes from achieving

the three desiderata listed earlier, namely generalization, providing accurate rewards for policy rollout

failures, and input robustness. We demonstrate that each component of ReWiND contributes to at least

one of each desiderata in Appendix G.5 where we ablate instruction augmentation, video rewinding, the

use of Ddemos, and �rst-frame positional embeddings.

Concluding Statement. In conclusion, our experiments demonstrated ReWiND’s e�ectiveness as a

reward function for policy learning through detailed reward analyses and its e�ectiveness as a framework

for sample-e�cient robot learning of unseen tasks, both in simulation and on a real bimanual robot. Finally,

we thoroughly discuss limitations and failure cases of ReWiND in Section 10.5.
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Figure 10.7: ReWiND Failure Example. We collect a demonstration of the Koch arms picking up a
sponge, handing it over, and scrubbing a plate. We �nd that there is poor reward alignment to this suc-
cessful demonstration, likely due to the lack of bimanual data in Open-X, occlusion of the sponge, and
poor camera viewpoints.

10.5 Limitations

Reward Analysis. One of the limitations of ReWiND lies in its inherent tradeo� using pre-trained vi-

sion and language embeddings. We do not �ne-tune these embeddings because our assumed demonstration

dataset Ddemos is very small, and in early experiments, we found that �ne-tuning sometimes hurts gen-

eralization performance. Not �ne-tuning may result in under�tting certain tasks, particular to robotics,

on which the pre-trained vision and language models were not trained. In Figure 10.7, we visualize an

example of dish scrubbing which ReWiND does not perform well on even though similar linguistic tasks

exist in the Open-X dataset. This poor result is likely due to Open-X not containing any bimanual data or

partial occlusion due to the camera viewpoint. Future work that pre-trains with even more robotics data

or incorporates intermediate representations or objectives with large-scale pre-training on internet data

(e.g., Li et al. [192] and Team et al. [346]) could allow �ne-tuning the input embeddings to ensure they can

better �t the Ddemos.

Initial Policy Performance. Finally, we use a relatively simple policy architecture that is trained from

scratch for each of our domains. We expect better performance by combining ReWiND with stronger
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policy architectures capable of ingesting more data (e.g., pre-trained vision-language-action models) that

have better zero-shot performance on new tasks to enable even more sample-e�cient learning irrespective

of reward function.

In fact, we con�rmed experimentally that initial zero-shot performance was strongly indicative of how

well the policy will learn a new task in our real-world experiments. For example, ReWiND does not help a

policy that con�dently performs the wrong task. If the ReWiND reward function could be combined with

stronger policies that are easy to learn online in the loop, we hope it will enable learning of many more

di�cult new tasks.

However, the best way to �ne-tune these models with online rewards remains an open challenge [254,

116]. One bottleneck is simply that, even with low-rank adaptation techniques that prior work found to

help train large policy architectures more e�ciently [210, 116, 165], �ne-tuning these models takes a lot

of compute and real-world time that makes real-world online learning with reward di�cult. We plan to

investigate blending ReWiND approaches with such policy architectures in the future.

Resets. ReWiND, in its current form, requires a human operator to perform resets of the environ-

ment. This assumption prevents ReWiND from being fully autonomous. However, recent reset-free RL

works [387, 120, 246, 390] demonstrate promising solutions to address the need for humans to supervise

learning. Regardless, human resets remain a roadblock to autonomous learning that is di�cult to address

in the real world [245].

SuccessDetection. Another limitation comes from requiring success detection for the reward bonus and

terminating policy rollouts upon success. We add a success bonus (detailed in Section 10.3.2) to account for

potential noisy rewards and imperfect success detection by the rewardmodel, given that a human is already

monitoring to reset the environment, and terminate the rollout upon success. We visualize examples in

Figure 10.7 of imperfect reward predictions in unseen tasks with lower than expected �nal rewards given
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to the last successful observation. These examples demonstrate the need for a success bonus, and we saw

similar or worse examples across all reward learning approaches evaluated in Section 10.4.1. Methods

such as those introduced by Ye et al. [390], Zhou et al. [415], and Yang et al. [387], which utilize VLMs as

success detectors, can remove the need for human supervision during the online phase of ReWiND when

combined with reset-free RL. In future work, we plan to investigate the combination of ReWiND with

reset-free approaches and automatic success detection for truly autonomous learning.
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Chapter 11

Conclusions

11.1 Further advancing real-world robot learning

My work with real-world robots [407, 404, 330, 402, 192, 385] and focus on adapting robots with RL in

the real world have highlighted two major remaining challenges: (1) achieving strong pre-trained policy

generalization and (2) reducing the need for human-driven environment resets. These open problems

represent signi�cant hurdles to overcome in future research.

Policy Generalization. For autonomous learning, policies must perform well from the start to avoid

unsafe or erratic behavior that necessitates human monitoring while learning [401]. Advances in LPTMs

and large-scale robotics datasets [67] make LPTM-based policies promising for generalizing well to new

tasks. I propose taking advantage of hierarchy to train data-e�cient VLAs where a higher-level VLM can

be trained on various sources of cross-domain data for better generalization than standard VLAs, while

low-level specialist policies can execute precise actions with high-frequency execution. In work accepted

to ICLR 2025 [192] that I talked about in Chapter 5, this architecture outperformed monolithic VLAs like

OpenVLA [165]. Building on this intuition, I plan to develop a hierarchical VLA where the high-level VLM

reduces input complexity for a low-level policy by masking irrelevant objects and predicting a high-level

path for the robot arm. This VLA will be trained via automatic data labeling using powerful vision LPTMs

to label arbitrary visual robotics datasets. Reduced input complexity will allow the low-level policy to
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generalize much better to varied image inputs, allowing training even on simulation data. Further in the

future, I plan on extending my continual learning [210] and o�ine RL techniques [404, 407], both of which

were applied to large transformer policies, to �ne-tune these large VLAs without over�tting on incoming

online interaction data to ensure stable, sample-e�cient autonomous learning.

Environment Resets. Finally, real-world autonomous learning is also hampered by the need for hu-

mans to reset the environment after each episode of data collection [245]. Prior work has attempted to

reduce the need for resets [92, 246, 120] and has made great advances towards reset-free learning, but

they still can require many manual human resets while learning or human-designed curricula for each

environment which is not scalable. To drastically reduce human reset frequency, I propose an alternative

evaluation-based approach where the robot predicts its performance and automatically designs a task cur-

riculum that includes built-in reset behaviors. For example, if the robot can reliably solve the task “stand

up the cereal box,” it can con�dently attempt “put the cereal box in the cupboard,” knowing it can reset

by standing the box up if dropped. This procedure can be combined with LPTMs to automatically ensure

that the proposed tasks and associated reset tasks are sensible. This approach should vastly reduce the

required human supervision needed for autonomous learning. I plan on working on this problem in the

future.

11.2 Expanding to other robotics domains

The methods proposed in this thesis were primarily evaluated on tabletop manipulation tasks, both in

simulation and the real world. Therefore, one interesting avenue of future research is to expand these ap-

proaches to other domains, such as robotic locomotion. In theory, given the same dataset assumptions, the

algorithms in all chapters except Chapter 7, which was designed for interpreting human hand demonstra-

tions for robot manipulation, can be applied to other robotics tasks. However, these dataset assumptions

may not directly translate.
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For example, Chapter 3 assumes language labels for sequences of low-level actions in the dataset, but

this may not be a practical assumption when training robot locomotion policies as it may be hard to label

minute di�erences in various locomotion gaits and styles. However, many of the takeaways and techniques

of each part are still applicable:

• Pre-Training Part I: LPTMs can help us label high-level behaviors, i.e., skills, even on unlabeled

data (Chapter 4). These skills can also be chained together with o�ine RL (Chapter 3) so that robots

can more easily learn new long-horizon tasks. Meanwhile, we can use high-level guidance from

LPTMs �ne-tuned on intermediate representations, such as paths, on web-scale robotics data (Chap-

ter 5) to achieve superior visual and semantic generalization in our pre-trained policies.

• Adapting with Human Supervision Part II: We can use LPTMs to help pre-train on lots of avail-

able robotics data and �ne-tune with low-rank adapters to new tasks given some human guidance in

the form of human demonstrations (Chapter 6). We can also use LPTMs to interpret human guidance

to help �nd relevant robotics data from o�ine data to train our robot for a speci�c task we want it

to adapt to (Chapter 7).

• Adapting with Minimal Supervision Part III: LPTMs can help robots �gure out which tasks are

important and practice them after being deployed to new environments. For example, after deploying

a locomotion robot to a new grassy environment where it’s unable to run quickly, an LLM can help

the robot practice running fast and jumping over obstacles (Chapter 8). Then, we can use LPTMs

to help provide dense rewards for semantically meaningful skills that are di�cult to write reward

functions for (Chapter 9 and Chapter 10).

153



11.3 Concluding Statement.

Throughout my thesis, I proposed algorithms that enable scalable policy adaptation via LPTM guidance

for (1) pre-training, (2) online learning with human guidance, and (3) autonomous learning. By combining

these approaches with future work addressing policy generalization and environment resets, I plan to

make further progress toward enabling truly autonomous robots that require minimal human supervision

as they adapt to new tasks and settings. I hope you have enjoyed reading this thesis as much as I did

working on the projects in it. Despite all of the trials and tribulations we all face in our PhDs, I felt this

was a very rewarding and humbling journey that I am glad to have experienced.
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Appendix A

SPRINT

A.1 Large Language Model Prompt

We list the full large language model summarization prompt in Figure A.1. The examples in the prompt

are �xed for all summarization queries. These examples are selected from the ALFRED validation dataset

(which is not otherwise used in our work) at random: We spell out the primitive skill annotations in the

“Task Steps:” part of each prompt example. Then, the “Summary” for each of these is the high-level, human-

written annotation for that trajectory from ALFRED. We repeatedly sampled these trajectories until each

example mentioned a di�erent object to prevent biasing the LLM towards certain types of objects.

We note that the “Look at the box under the lamp light” example is important to make the LLM give

reasonable summaries for similar tasks in ALFRED where the agent picks something up and turns on a

light. This is because most of the human labels for turning on the lamp do not mention the object in the

previous step, making it di�cult for the LLM to realize that the task has to do with looking at the held

object under a lamp.
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A.2 Baselines and Implementation

We implement IQL [171] as the base o�ine RL algorithm for all goal-conditioned o�ine RL pretraining

baselines and ablations due to its strong o�ine and �netuning performance on a variety of dense and

sparse reward environments. At a high level, IQL trains on in-distribution (s, a, s′, r, a′) tuples from the

dataset rather than sampling a policy for a′ to ensure that the Q and value functions represent accurate

estimated returns constrained to actions in the dataset. The value function is trained with an expectile

regression loss controlled by a hyperparameter τ , where τ = 0.5 results in standard mean squared error

loss and τ → 1 approximates the max operator, resulting in a more optimistic value function that can

better “stitch” together trajectories to obtain distant reward in sparse reward settings. The IQL policy is

trained to maximize the following objective:

eβ(Q(s,a)−V (s)) log π(a|s),

which performs advantage-weighted regression [277] with an inverse temperature term β. In practice, the

exponential advantage term is limited to a maximum value to avoid numerical over�ow issues. We detail

shared training and implementation details below, with method-speci�c information and hyperparameters

in the following subsections.

A.2.1 ALFRED Details

Observation space. The state space of the ALFRED environment consists of 300 × 300 RGB images.

Following the baseline method in ALFRED [328], we preprocess these images by sending them through a

frozen ResNet-18 encoder [133] pretrained on ImageNet [78]. This results in a 512 × 7 × 7 feature map

that we use as the observation input to all networks.
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Action space. The agent chooses from 12 discrete low-level actions. There are 5 navigation actions:

MoveAhead, RotateRight, RotateLeft, LookUp, and LookDown and 7 interaction actions: Pickup, Put,

Open, Close, ToggleOn, ToggleOff, and Slice. For interaction actions the agent additionally selects one

of 82 object types to interact with, as de�ned by Pashevich, Schmid, and Sun [273]. In total, the action

space consists of 5+7∗82 = 579 discrete action choices. Note that this action space de�nition is di�erent

from the action space in Shridhar et al. [328], which used a pixel-wise mask output to determine the object

to interact with. In contrast to Shridhar et al. [328] we aim to train agents with reinforcement learning

instead of imitation learning and found the discrete action parametrization more amenable to RL training

than dense mask outputs. For all methods, due to the large discrete action space, we perform some basic

action masking to prevent agents from taking actions that are not possible. For example, we do not allow

the agent to Close objects that aren’t closeable nor can they ToggleOn objects that can’t be turned on.

Policy and critic networks. For all baselines and SPRINT base models are implemented on the

transformer architecture proposed in Episodic Transformers [273]. For o�ine RL methods (AM, SPRINT)

we follow the advice of [333] and parameterize both Q functions and the Value function of IQL as separate

output heads of one transformer backbone that is used for all critic networks. We train both policies

and critic transformer networks with an observation history of up to 16 previous observations, each one

being processed by a convolutional network before being �attened into a 768-dim feature. Our discrete

policy has two output heads of size 12 and 82 for the action and interaction object outputs respectively.

Critic networks are conditioned on both the observation and the discrete action output of the policy. In

networks with language input, words are individually tokenized and the entire language instruction is

fed to the policy and critic networks and embedded into a sequence of learned 768-dim embeddings, one

for each token. We perform cross-attention between all network inputs: language embeddings, previous

observation embeddings, and the previous action where applicable. The output of this cross-attention

mechanism is then transformed by linear layers into the �nal output for the network.
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Pre-training hyperparameters. A hyperparameter search was performed �rst on the language-

conditioned BC-baseline to optimize for training accuracy. These hyperparameters were carried over to

the IQL implementation, and another search for IQL-speci�c hyperpameters were performed on a baseline

IQL policy conditioned on language instructions. With these parameters �xed, we performed onemore hy-

perparameter search speci�c to Actionable Models but for the �nal implementation of SPRINT we re-used

the same hyperparameters and only selected SPRINT-speci�c parameters heuristically. Hyperparameters

for eachmethod are detailed in separate tables. Shared hyperparameters for all methods (where applicable)

are listed below:

Param Value

Batch Size 1024

# Training Batches 140k

Learning Rate 1e-4

Optimizer AdamW

Dropout Rate 0.1

Weight Decay 0.1

Discount γ 0.97

Q Update Polyak Averaging Coe�cient 0.005

Policy and Q Update Period 1/train iter

Nonlinearity ReLU

IQL Advantage Clipping [0, 100]

IQL Advantage Inverse Temperature β 5

IQL Quantile τ 0.8

Maximum Transformer Context Length 16
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Finetuning details and hyperparameters. We �ne-tune by running IQL on online-collected data

without any of the chaining or aggregation steps. For all models, we �netune by sampling old pre-training

data and newly collected data at a ratio of 70%/30%. Without this mixed batch training, we found the

transformer-based networks to over�t to the new data, somethingwe did not see when experimentingwith

standard MLPs. The newly collected data is also sampled from two separate bu�ers at equal proportions,

one which contains trajectories that received at least 1 reward (i.e., completed one sub-task) and one that

contains trajectories that received none. This is another transformer-speci�c adaptation we had to make

for the models to train stably with IQL on online-collected data.

Each method is �netuned on every task in the EVALSCENE task set individually; that is, we pre-train

once and then �netune policies for each task in the task set. We then average returns over all tasks, then

report metrics averaged over all random seeds. For each task, we de�ne a maximum rollout time horizon

of 2 timesteps per environment action required by an expert ALFRED task planner.

When not speci�ed, �netuning parameters are identical to pre-training parameters. Finetuning hyper-

parameters are speci�ed below:

Param Value

# Initial Rollouts 50

Training to Env Step Ratio 20

ϵ in ϵ-greedy action sampling 0

Policy action sampling True

# Parallel Rollout Samplers 10

A.2.2 Real Robot Implementation Details

The real-world environment uses a Kinova Jaco 2 robot arm. Below we detail the implementation and

training details speci�c to the real robot environment.
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Observation space. The view observations consist of 224×224×3 cropped RGB images, which are cap-

tured from a Logitech Pro Webcam C920 for the third-person view and an Intel RealSense D435 for the

wrist-view. We leverage a pretrained R3M [252] model to encode each view observation. Additionally,

the state representation includes the robot’s end-e�ector position, velocity, and gripper state. Notably,

the end-e�ector position and velocity are two continuous vectors, while the gripper state is represented

as a one-hot vector, indicating OPEN, CLOSE, or NOT MOVE. To form the observation for the policy, we

concatenate the embedded RGB input with state information.

To condition on language inputs, we use a pre-trained sentence embedder to embed the entire language

annotation into a vector of size 384 (as our network backbone is an RNN instead of a transformer). This em-

bedding is donewith the all-MiniLM-L12-v2 pre-trained embeddingmodel from the SentenceTransformers

package [298].

The total state input dimension is: 2048 (third-person R3M) + 2048 (wrist R3M) + 15 (Jaco state input)

+ 384 (language embedding) = 4495.

Action space. The robot action space comprises the changes in the end e�ector position between each

time stamp, along with the gripper opening/closing commands. These actions are transmitted to the robot

at a frequency of 10 Hz and interpreted as desired joint poses using PyBullet’s inverse kinematics module.

Network architecture and training. Similar to [410], we use the Action Chunking method to train

an autoregressive policy. Speci�cally, our policy employs an LSTM model to predict the next 15 actions,

given the initial observation as input, i.e., π(at:t+15|st). Our Q and Value networks are also recurrent,

predicting per-timestep rewards for each action in the sequence. Just like the policy, they also only see the

observation before the action sequence starts.

Because of the fact that the gripper action is discrete and heavily imbalanced in class distribution, we

weigh the gripper action loss inversely proportionally to the number of examples in each class.
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Pre-training details and hyperparameters. We performed a heuristic hyperparameter search by �rst

tuning the language-conditioned BC baseline to be as e�ective as possible on zero-shot evaluations of

training tasks, then performed a small heuristic hyperparameter for the SPRINT. Shared hyperparameters

are detailed below:

Param Value

Batch Size 128

# Training Batches 50k

Learning Rate 5e-4

Optimizer AdamW

Weight Decay 0.1

Discount γ 0.99

Q Update Polyak Averaging Coe�cient 0.005

Policy and Q Update Period 1/train iter

Nonlinearity LeakyReLU(0.2)

IQL Advantage Clipping [0, 100]

IQL Advantage Inverse Temperature β 5

IQL Quantile τ 0.8

Action Chunking Length 15

Fine-tuning details and hyperparameters. We collect 25 demonstrations for each downstream task

and perform individual �ne-tuning of the models for each task. In the case of the pre-trained mod-

els (SPRINT, L-BC composite, and L-BC primitive), we conduct 500 epochs of �ne-tuning. As for the

model without pre-training, we train 2000 epochs only on the downstream task demonstrations. The �ne-

tuning/training hyperparameters are identical to those for pre-training.
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A.2.3 Language-conditioned Behavior Cloning

Our language-conditioned behavior cloning (L-BC) comparison method is inspired by and replicates BC-

Zero [150] and LangLfP [218]. BC-Zero performs language imitation learning [281], and both BC-Zero and

LangLfP have an additional image/video-language alignment objective. In BC-Zero, their video alignment

objective aligns language embeddings with videos of humans performing tasks related to those the BC-

Zero robot agent trains on. LangLfP’s image-language alignment objective allows their policy to accept

both image and natural language goals as input due to only having a subset of their data labeled with

hindsight language labels. As we don’t have human videos of these tasks and our entire dataset is labeled

with language labels, we do not add a video or image alignment objective.

Hyperparameters for the L-BC baseline are identical to the shared parameters above for both environ-

ments, where applicable.

ALFRED: We implement L-BC by using the same architecture as described in the shared details section

above with just a single transformer policy network that trains to maximize the log-likelihood of actions in

the dataset. As our entire dataset consists of expert trajectories, this baseline ideally learns optimal actions

for the instructions.

Real Robot: L-BC is implemented with the action-chunked LSTM policy network to maximize log-

likelihood of actions in the dataset as described in the real robot implementation details section above.

Again the dataset consists of human expert trajectories so L-BC should learn optimal actions for the given

instructions.

A.2.4 Episodic Transformers

Episodic Transformers (ET) [273] trains a transformer architecture on full sequences of ALFRED instruc-

tions with a behavior cloning objective. This is currently state of the art in the “Seen Path-LengthWeighted
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Success Rate” evaluation metric on the ALFRED leaderboard. We adopted the ET implementation from the

o�cial code repository.

For fair comparison, we make a few modi�cations to make it as close as possible to SPRINT and the base-

lines: 1) we train it on the same dataset as all baselines, so we do not generate new synthetic training data

like the original implementation Pashevich, Schmid, and Sun [273] since it assumes access to an expert

planner, 2) we encode visual frames with a Resnet-18 instead of Resnet-50 backbone, the same we use for

all other models, 3) we remove the high-level goal speci�cation from the input text tokens as we do not

assume access to those, and 4) we train the model for longer to match the number of training steps for all

methods.

A.2.5 Actionable Models (AM)

Actionable Models [49] pre-trains a goal-conditioned Q function conditioned on randomly sampled im-

age goals and also performs a goal-chaining procedure very similar to our skill chaining procedure. We

implement AM by modifying the base IQL policy and critic networks to take in image goals instead of

natural language embeddings as goals. These goals are provided in the same way as the observations as a

sequence of 5 frames (the last 5 frames in the trajectory) processed by a frozen ResNet-18.

To allow for fair comparison between our approach and AM, we implement AM with the same pow-

erful o�ine RL algorithm, IQL [171], used in our method. IQL ensures that the policy does not choose

out-of-distribution actions by using advantage-weighted regression on in-distribution actions for policy

extraction. With this, we found the conservative auxiliary loss AM adds to push down Q-values for out-

of-distribution actions to be unnecessary and even hurtful to its overall performance, so we omit this

additional loss term.
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We also pre-train AM on the same long-horizon trajectories as those generated by SPRINT during

LLM-based skill aggregation. This ensures a fair comparison in terms of the types and lengths of tasks

seen during pre-training.

Finally, after consulting the authors of AM, we tried varying maximum trajectory lengths when sam-

pling random goals. We found that allowing random goals to be sampled from anywhere within a trajec-

tory resulted in the best zero-shot evaluation performance for AM, so our numbers are reported with this

implementation detail.

A.2.6 SPRINT

The implementation details of SPRINT follow from the general discussions at the top of this section. The

key di�erences are in (1) language model skill aggregation and (2) cross-trajectory skill chaining, detailed

below.

LLM Skill Aggregation. We perform LLM skill aggregation fully o�ine by iterating through every tra-

jectory and aggregating sequences of adjacent primitive skill sub-trajectories. Assuming a trajectory with

N primitive skills, we select all
(
N
2

)
pairs of start and end skills and aggregate all instructions from start

to end with the LLM. With 73k original language-annotated sub-trajectories in ALFRED, this procedure

allows us to generate an additional 110k aggregated trajectories. We then add these trajectories to the

original dataset and train on the entire set.

On our real-world robot dataset, we start with ∼6k language-annotated sub-trajectories and perform

LLM skill aggregation on all pairs of trajectories directly next to each other (restricting to a maximum

of 2 skills being aggregated at any time). We restrict aggregation in this manner because each trajectory

contains many sub-trajectories of play-like data where many of the sub-trajectories are not related to each

other. Aggregation doubles the size of our dataset to almost ∼13k trajectories.
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Cross-trajectory skill chaining. We perform cross-trajectory skill chaining in-batch. Instead of sam-

pling a second trajectory to perform chaining on, we simply permute the batch indicies to generate a set of

randomly sampled second trajectories. Then, we perform a second loss function update, in addition to the

original update on the sampled trajectories, with equal loss weighting, to apply the skill-chaining update.

We apply the chaining procedures from Eq. 3.3 in-batch. Empirically, we found that cross-trajectory skill

chaining works slightly better with the on-policy Value function obtained through IQL, therefore we use

state values at the chaining targets instead of state-action Q-values.

SPRINT-speci�c hyperparameters follow:

Param Value

LLM LLAMA-13B [352]

LLM Token Filtering Top-p 0.9

LLM Token Sampling Temperature 0.6

A.2.6.1 Cross-trajectory chaining preserves the MDP.

When performing cross-trajectory chaining using Eq. 3.3, special care must be taken to preserve the dy-

namics of the original Markov Decision Process (MDP). When chaining together two trajectories τA and

τB , we concatenate the two sentences of each trajectory together and relabel their rewards with Eq. 3.3.

The new language annotation used to chain together these trajectories is the concatenation of the two

sentences, implying that the agent �nishes skill (A) and then skill (B). However, we cannot concatenate

the two trajectories together into one longer trajectory, as doing so would imply that the agent can in-

stantaneously jump from the last state of skill (A) to the �rst state of skill (B), which may not be possible.

Therefore, we instead treat the relabeled trajectories as separate trajectories with the same language an-

notation (lines 36 and 37 of Algorithm 1).
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However, this introduces two possible complications: 1) Language annotations di�ering in structure from

those in the original dataset, and 2) Possible instruction ambiguity. We detail how these complications are

resolved in SPRINT below:

1. Language annotations di�ering in structure. Language annotations produced by the chaining

procedure will result in annotations that implicitly skip certain steps. For example, when chaining

skill (A), “make the bed,” and skill (B), “make a cup of co�ee,” the resulting chained annotation will be

“Make the bed. Make a cup of co�ee.” However to perform skill (B) the agent needs to �rst move to

the kitchen from the bedroom to make the cup of co�ee, which is skipped in this annotation. LLM-

based skill aggregation (Section 3.3.2) helps bridge this gap by summarizing long-horizon sequences

while skipping certain implied steps. For example, one real LLM summary summarized the sequence:

"1: Pick up the plaid pillow that is on the left end of the couch. 2: Place the pillow on the ottoman" into

the instruction "Place a plaid pillow on the ottoman,", which skipped the step of picking up the pillow

as it is implied that you must do so before placing the pillow down. Using the LLM augments our

original dataset such that, in ALFRED, we have 2.5x the original data after performing o�ine skill

aggregation, and in the real robot manipulation environment we have 2x the amount of original

data. Therefore after performing LLM aggregation, there are many examples of similar instructions

to those used for chained trajectories that imply certain steps without mentioning them explicitly.

2. Instruction ambiguity. When chaining trajectories, there will be some ambiguity introduced as

we do not have intermediate instructions for going from the last state of A to the initial state of B

(obtaining these instructions requires additional human e�ort). This ambiguity is only present in the

states of trajectory A, as when training on trajectory B, the agent can easily infer that the instructions
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for trajectory A are �nished and the just follow the instructions relevant for trajectory B. We believe

that the e�ects of the ambiguity on pre-training performance depends greatly on the given dataset.

In complex and diverse environments, hindsight-labeled annotations should contain details speci�c

to certain scenes, resolving this ambiguity. In ALFRED, the annotations usually contain information

about the speci�c objects that the agent must interact with or locations that the agent must go to.

For example, annotations for rinsing mugs typically are of the form "clean the MUG in the sink,", or

annotations for picking up a candle will often say something like "pick up the YELLOW CANDLE on

the COUNTER,", highlighting speci�c details regarding what the agent is supposed to do to complete

the trajectory.

A.2.7 SayCan

In ALFRED experiments, we evaluate the performance of SayCan [7], a top-down LLM-planning approach

that breaks down a high-level task into a sequence of steps that a language-conditioned policy can execute.

SayCan does not perform any �ne-tuning as it is not a pre-training method, instead we implement it by

prompting a large language model to produce a probability distribution over the set of primitive skill

instructions relevant for each task. Therefore it receives some privileged information over all of the other

compared methods, including SPRINT, about which primitive skills to choose from in each evaluation task.

Speci�cally, we use LLaMA-13B directly at test time to produce plans, the same model that we used

to perform LLM skill relabeling for SPRINT. The pre-trained policies are pre-trained on the same data as

L-BC except that we also pre-train a value function to use with SayCan as it weighs skill predictions using

both a pre-trained language-conditioned value function and the LLM-produced probabilities.

The prompt for SayCan, inspired by the prompt recommended in the original paper, and with the same

number of examples as the one for SPRINT, follows below:
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Robot: Hi there, I’m a robot operating in a house. Robot: You can ask me to do various tasks and I’ll tell you

the sequence of actions I would do to accomplish your task.

Human: How would you put the box with keys on the sofa?

Robot: 1. Pick up the keys on the center table. 2. Put the keys in the box. 3. Pick up the box with keys. 4. Put

the box with keys on the sofa close to the newspaper.

Human: How would you put a cooled slice of lettuce on the counter?

Robot: 1. Pick up the knife from in front of the tomato. 2. Cut the lettuce on the counter. 3. Set the knife down

on the counter in front of the toaster. 4. Pick up a slice of the lettuce from the counter. 5. Put the lettuce slice

in the refrigerator. take the lettuce slice out of the refrigerator. 6. Set the lettuce slice on the counter in front of

the toaster.

Human: How would you put a book on the couch?

Robot: 1. Pick up the book on the table, in front of the chair. 2. Place the book on the left cushion of the couch.

Human: How would you put the cleaned fork in a drawer?

Robot: 1. Pick up the fork from the table. 2. Put the fork in the sink and �ll the sink with water, then empty the

water from the sink and remove the fork. 3. Put the fork in the drawer.

Human: How would you put the box of tissues on the barred rack?

Robot: 1. Take the box of tissues from the makeup vanity. 2. Put the tissues on the barred rack. 3. Take the box

of tissues from the top of the toilet. 4. Put the tissues on the barred rack.

Human: How would you put a heated glass on the wooden rack?

Robot: 1. Pick up the glass from the sink. 2. Heat the glass in themicrowave. 3. Put the glass on thewooden rack.
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Human: How would you look at the box under the lamp light?

Robot: 1. Pick up the box from the far side of the bed. 2. Hold the box and turn on the lamp.

Human: How would you [HIGH LEVEL TASK DESCRIPTION]?

Robot: 1. [SKILL 1 EXECUTED SO FAR] 2. [SKILL 2 EXECUTED SO FAR] ... N. ____

A.3 Dataset, Environment, and Task Details

A.3.1 ALFRED

A.3.1.1 Dataset Details

For training and evaluation we leverage the ALFRED benchmark and dataset [328]. The ALFRED training

dataset contains ∼6.6k trajectories collected by an optimal planner following a set of 7 high-level tasks

with randomly sampled objects (e.g., pick up an object and heat it). Each trajectory has at least three

crowd-sourced sets of language instruction annotations. Each trajectory consists of a sequence of 3-19

individually annotated skills (see Figure A.3, left). This results in a total of 141k language-annotated skill

trajectories.

However, nearly half of the language instructions in the ALFRED dataset are navigation skill instruc-

tions like “turn left, then look up and walk to the counter on the right”. To get a more balanced skill

annotation dataset, we merge all navigation skills with the skill that immediately follows them, using only

the annotation of the next skill. After this processing step, the resulting dataset contains 73k language-

annotated primitive skill trajectories. After we merge the navigation skills, the average number of skills in

each trajectory is 3.5 skills per trajectory (Figure A.3, middle), and the average number of actions in each

skill is 14.3 (Figure A.3, right).
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Table A.1: Evaluation Task Speci�cs. Note that the “number of env actions per task” corresponds to the
number of environment actions the ALFRED expert planner required to complete that task.

EVALINSTRUCT EVALLENGTH EVALSCENE

Number of Tasks 100 20 10

Task Lengths (# primitive skills) [1, 2, 3, 4, 5, 6, 7] [7, 8] [1, 2, 3, 4, 5]

Min Number of Env Actions per Task 1 34 2

Avg Number of Env Actions per Task 39.1 60.9 46.6

Max Number of Env Actions per Task 113 104 124

A.3.1.2 Evaluation Tasks

Overview. We evaluate agents through zero-shot policy evaluation and �netuning on three sets of eval-

uation tasks in the ALFRED environment: (1) EVALINSTRUCT to measure the ability of pre-trained agents

to execute semantically meaningful instructions at varied levels of abstraction, (2) EVALLENGTH to measure

the ability of agents to chain behaviors across multiple trajectories to solve long tasks, and (3) EVALSCENE

to evaluate generalization performance when �netuning to unseen household �oor plans. We did not use

the o�cial ALFRED benchmark test sets to construct EVALSCENE since we require a task demonstration to

compute how many subtasks the agent solved; these demonstrations are not given for the test set tasks.

However, the tasks we evaluate on generally are designed to be representative of the tasks in the AL-

FRED test set: they test the agent on unseen instruction-scene combinations and consist of varied-length,

compositional tasks. Like the ALFRED test set, our evaluation consists of long-horizon tasks that require

sequential execution of multiple subtasks.

Collecting evaluation task data. The ALFRED dataset provides high-level language annotations for

each of the trajectories in the dataset. We could use these annotations as unseen task-instructions to eval-

uate our agents. However, we found that the di�erent skills are not equally distributed across trajectories

of di�erent skill lengths, e.g., most 2-skill trajectories perform pick-and-place tasks while tasks involving

heating skills only appear in length 7+ trajectories. To allow evaluation with a less biased skill distribution,

207



we create the EVALINSTRUCT task set by randomly choosing a trajectory from the ALFRED dataset and then

randomly sampling a subsequence of skills of a certain length from this trajectory. To obtain a high-level

language instruction that summarizes this new subsequence, we crowd-source labels from human anno-

tators. For labeling, each annotator is presented with a remotely hosted Jupyter notebook interface (see

Figure A.4). Whenever we by chance sample a full ALFRED trajectory for annotation, we directly used

the existing high-level annotation from the ALFRED dataset. We annotate 80 trajectories with human an-

notators and combine them with 20 randomly sampled single-skill trajectories, resulting in a total of 100

evaluation tasks (see Figure A.5 for example instructions). This results in 20 tasks of length 1 skills, 20

tasks of length 2 skills, 20 tasks of length 3 skills, 20 tasks of length 4 skills, and 20 tasks of lengths 5+ (5-7)

skills.

For EVALLENGTH, we randomly sampled 20 full trajectories from the ALFRED dataset that had sequences

of 7 or 8 skills (10 of length 7, 10 of length 8) and removed these trajectories from the training dataset before

performing LLM-based skill aggregation. This ensures AM and SPRINT must perform skill chaining to

solve these tasks by ensuring that there were valid sequences of skills to chain together to be able to solve

these removed tasks. For example, assume a (shortened for clarity) sampled skill sequence is “pick up

apple,” then “put apple in microwave”, then “slice the apple.” Then, either Actionable Models or SPRINT

can chain together the sub-trajectory associated with “pick up apple” then “put apple in microwave” with

the “slice the apple” sub-trajectory to solve this task. These trajectories all had annotations from ALFRED

annotators, so we used those annotations directly (see Figure A.7 for example instructions).

Finally, for EVALSCENE, we collected a set of 10 full-length trajectories from the ALFRED “valid-unseen”

dataset consisting of validation tasks in unseen �oor plans. We collected 2 of each length from 1 through

5 for a total of 10 tasks by sampling random full-length trajectories from this dataset, with the exception

of length 1 tasks (we just sample random skills to create length 1 tasks). As these are full trajectories,
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they already have human annotations from ALFRED, which we directly use as the task description (see

Figure A.6 for example instructions).

We list additional details about the tasks in each evaluation set in Table A.1.

Finally, we display 5 randomly sampled tasks, along with their human annotations, from each of our

task sets in Figures A.5, A.6, and A.7.

Online �netuning environment setup. During online-�netuning we initialize the agent in the same

house �oor plan as the trajectory the task was extracted from to ensure executability. During �netuning,

we give each episode a time horizon of 2x the number of environment actions needed by the expert planner

to solve the task. We give sparse sub-task rewards for each skill solved by the agent during the episode.

Therefore for length 1 tasks, the agent can only be rewarded once before the episode ends, while for length

5 tasks, the episode terminates on the �fth reward signal.

A.3.2 Real Robot

Here we detail the dataset and evaluation tasks used for the real world tabletop environment experiments.

Dataset Details. Part of our data comes from data collected from prior work on the same arm setup

[76], in addition to additional trajectories collected for this project.

In total, we collected 329 long-horizon trajectories, resulting in ∼6k individual “primitive” skills con-

sisting of pick and place tasks such as “pick up the black bowl” or “put the apple in the sink.” These tra-

jectories involve unique scene arrangements of di�erent toy objects such as an apple, orange, black bowl,

white plate, oven, sink, dish rack, etc. The total dataset size is 455,473 individual state-action pairs.

Evaluation Tasks. We formulate 3 unseen evaluation tasks requiring the completion of 2, 4, and 8

subtasks. These tasks are set in an environment con�guration that has not been seen before in the training
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data, i.e., the object combination is not present in the training data. For each of the tasks, we collect 25

demonstrations to �netune pre-trained policies for evaluation.

The three tasks are de�ned below:

1. Bake bread in the oven (length 2): The robot must (1) pick up the bread, (2) place it in the oven.

2. Serve heated milk in the bowl (length 4): The robot must (1) pick up the milk carton, (2) place it in

the black bowl bowl, (3) pick up the bowl with the milk in it, (4) place the bowl in the oven.

3. Serve milk in the bowl and butter and baked bread in the plate (length 8): The robot must: (1) pick

up the milk carton, (2) put it in the black bowl, (3) pick up the butter stick, (4) put it in the plate, (5)

pick up the bread, (6) bake the bread in the oven, (7) pick up the bread from the oven, (8) place the

bread in the plate.
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A.4 Extended Experiments, Results, and Analysis

Table A.2: EVALINSTRUCT and EVALLENGTH eval dataset per-length and overall skill completion rates. See
Section 3.4 for experiment setup.

AM ET L-BC SayCan SPRINT

EVALINSTRUCT

Number of Completed Subtasks Overall 0.82 ± 0.07 1.15 ± 0.14 0.39 ± 0.02 1.00 ± 0.12 1.94 ± 0.04

Length 1 Progress 0.47 ± 0.06 0.75 ± 0.07 0.89 ± 0.07 0.94 ± 0.02 0.89 ± 0.04
Length 2 Progress 0.75 ± 0.10 1.20 ± 0.18 0.66 ± 0.05 0.69 ± 0.22 1.52 ± 0.10

Length 3 Progress 0.96 ± 0.28 1.61 ± 0.23 0.27 ± 0.08 0.61 ± 0.09 2.21 ± 0.03

Length 4 Progress 0.56 ± 0.17 1.45 ± 0.25 0.05 ± 0.05 0.60 ± 0.18 2.36 ± 0.16

Length 5 Progress 1.59 ± 0.53 0.76 ± 0.14 0.07 ± 0.05 0.57 ± 0.04 3.04 ± 0.24

Length 6 Progress 1.20 ± 0.40 0.86 ± 0.94 0.05 ± 0.08 0.24 ± 0.08 2.87 ± 0.20

Length 7 Progress 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.40 ± 0.49 0.00 ± 0.00

EVALLENGTH

Number of Completed Subtasks Overall 1.71 ± 0.43 1.76 ± 0.14 0.07 ± 0.00 0.66 ± 0.08 4.40 ± 0.39

Length 7 Progress 0.80 ± 0.16 0.78 ± 0.45 0.06 ± 0.05 0.50 ± 0.06 3.38 ± 0.43

Length 8 Progress 2.62 ± 0.71 2.74 ± 0.55 0.26 ± 0.18 1.50 ± 0.24 5.25 ± 0.64

Here, we present additional results complementary to the experiments in the main paper in Section 3.4.

We present and analyze LLM annotation examples in Section A.4.1.

A.4.1 LLM Summary Examples

We randomly sample 3 LLAMA-13b task summaries produced while performing skill aggregation in AL-

FRED (explained in Section 3.3.2) using the prompt in Figure A.1 and display them in Figure A.8 along

with summaries from OPT-350m and OPT-1.3B [408], 350M and 1.3B parameter open-source models for

comparison. After analyzingmanymore examples, we see that LLaMA-13b generally provides �tting high-

level summaries for most sequences by skipping over implied sub-tasks (although it sometimes also skips

over important sub-tasks, likely due to the prompt). The other smaller models, which are also pre-trained

on smaller corpora, tend to produce worse summaries and make up details more often.

A.4.2 Qualitative Comparison Results

Here we display and analyze some qualitative task execution examples from ALFRED and our real robot

environment.
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A.4.2.1 ALFRED

Zero-shot evaluation. Wecompare SPRINT, AM, and L-BC zero-shot evaluation results on long EVALLENGTH

tasks in Figure A.11. In general, SPRINT is able to make substantially more progress on EVALLENGTH tasks

as it leverages the large language model to generate longer-horizon, semantically meaningful pre-training

tasks and performs cross-trajectory chaining to learn to chain its existing dataset tasks. In the visualized

examples, SPRINT is able to understand and successfully execute many of the sub-tasks implied but not

directly stated by the natural language task instruction. L-BC makes very little progress on these tasks,

not even understanding what the �rst sub-task to complete should be as the task annotation is out of dis-

tribution from what it saw while training. Finally, AM is able to make some progress on some of these

tasks due to its long-horizon goal pre-training objective. However, this is less e�ective than our language-

conditioned pre-training in such zero-shot evaluations.

We show some example plans generated by SayCan, two that did not complete the task and one that

did, in Figure A.9. While SayCan can generate correct plans for certain tasks, the plans generated are

subject to failures by the LLM to pick the correct skill.

Finetuning. We �netune SPRINT, AM, and L-BC on EVALSCENE tasks, in household �oorplans that were

never seen while training, and visualize qualitative policy rollout examples after �netuning in Figure A.12.

In general, SPRINT is able to �netune to longer-horizon tasks while AM and L-BC both struggle with mak-

ing progress on longer-horizon tasks despite receiving rewards for every completed sub-task. SPRINT’s

ability to complete more sub-tasks on many of the longer-horizon tasks is demonstrated in Figure A.12a,

while a case in which both SPRINT and AM make partial progress throughout �netuning is demonstrated

in Figure A.12b. We believe that AM has more trouble �netuning on these tasks than SPRINT because

the task speci�cation for AM (goal images) is out of distribution; pre-training on language tasks with
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SPRINT allows agents to more easily learn longer-horizon behaviors as the task speci�cations may still be

in-distribution of the pre-training tasks that LLM skill-aggregation and skill chaining produce.

We do not �ne-tune SayCan as it is not a pre-training/�ne-tuning method. This makes it susceptible

to both planning and policy execution failures in the unseen environments in EVALSCENE. We demonstrate

policy execution failures in Figure A.10.

A.4.2.2 Real Robot

We visualize evaluation rollouts after �netuning on our most di�cult, length 8 task, “Serve milk in the

bowl and butter and baked bread in the plate,” in Figure A.13. We display an example comparison between

SPRINT and L-BC composite, the best-performing L-BC baseline in which the �ne-tuned SPRINT model

successfully follows and accomplishes the skills in the demonstrated long-horizon sequences. The L-BC

composite agent �nishes the �rst four skills before encountering confusion about the subsequent skill:

pick up the long bread. This comparison reveals that the L-BC composite model exhibits pro�ciency in

completing some skills but overall does struggle with long-horizon tasks. Empirically in our evaluations,

we saw that this baseline exhibits greater variance than SPRINT among its evaluation runs, sometimes

only executing 2 skills and other times �nishing 8.
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Instructions: give a high-level description for the following steps describing common household tasks.

Task Steps: 1. Pick up the keys on the center table. 2. Put the keys in the box. 3. Pick up the box with
keys. 4. Put the box with keys on the sofa close to the newspaper.
Summary: Put the box with keys on the sofa.

Task Steps: 1. Pick up the knife from in front of the tomato. 2. Cut the lettuce on the counter. 3.
Set the knife down on the counter in front of the toaster. 4. Pick up a slice of the lettuce from the
counter. 5. Put the lettuce slice in the refrigerator. take the lettuce slice out of the refrigerator. 6. Set
the lettuce slice on the counter in front of the toaster.
Summary: Put a cooled slice of lettuce on the counter.

Task Steps: 1. Pick up the book on the table, in front of the chair. 2. Place the book on the left cushion
of the couch.
Summary: Put a book on the couch.

Task Steps: 1. Pick up the fork from the table. 2. Put the fork in the sink and �ll the sink with water,
then empty the water from the sink and remove the fork. 3. Put the fork in the drawer.
Summary: Put the cleaned fork in a drawer.

Task Steps: 1. Take the box of tissues from the makeup vanity. 2. Put the tissues on the barred rack.
3. Take the box of tissues from the top of the toilet. 4. Put the tissues on the barred rack.
Summary: Put the box of tissues on the barred rack.

Task Steps: 1. Pick up the glass from the sink. 2. Heat the glass in the microwave. 3. Put the glass on
the wooden rack.
Summary: Put a heated glass on the wooden rack.

Task Steps: 1. Pick up the box from the far side of the bed. 2. Hold the box and turn on the lamp.
Summary: Look at the box under the lamp light.

Task Steps: 1: [SKILL 1]. 2: [SKILL 2]. 3: [SKILL 3]. ... N: [SKILL N].
Summary:

Figure A.1: The full prompt that we use for summarization. Following the suggestions of Ahn et al. [7] for
prompt design, we explicitly number each step. The LLM completion task begins after “Summary:”. For
brevity, we omit the new line characters between all numbered steps.
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Task: “Warm up a piece of apple”

“Pick up apple”
“Place apple 

on table”
“Pick up knife” “Slice apple”

“Place knife 
on table”

“Pick up 
apple slice”

“Heat apple slice in the microwave and take it back out” “Place apple slice on the table”

Figure A.2: Example successful task execution of our pre-trained SPRINT agent for the challenging “Warm

up a piece of apple” task. Successful execution requires solving 8 subtasks in sequence and a total of 50 steps.
This sequence of subtasks was never observed in the training data. SPRINT uses cross-trajectory stitching
and LLM aggregation to learn unseen tasks.
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(a) Skills per trajectory in the original
ALFRED dataset.
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(b) Skills per trajectory in the merged
dataset.
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(c) Actions per skill in the merged
dataset.

Figure A.3: Left: distribution of the number of skills in each trajectory in the original ALFRED dataset.
Middle: distribution of skills per trajectory in the “merged” dataset with merged navigation skills. Right:
distribution of number of actions per skill in the “merged” dataset.
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Figure A.4: Data collection jupyter notebook page. Note that there is a “Skip” button so that human
annotators can skip an instruction sequence if they do not feel it is semantically meaningful or easy to
summarize.
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Skills to Summarize: 1: Grab the knife on the counter. 2: Place the knife in the sink then turn the faucet on so
water �lls the sink. Turn the faucet o� and pick up the knife again. 3: Place the knife on the table to the left of
the wooden bowl.
Annotator Summary: Wash the knife from the counter, put in on the table.

Skills to Summarize: 1: Pick up the blue book closest to your and the phone from the bed. 2: Turn on the lamp
to take a look at the book in the light.
Annotator Summary: Examine the book by the light of a lamp.

Skills to Summarize: 1: Pick up yellow candle on counter. 2: Open cabinet, put candle in cabinet, close cabinet
3: Pick up yellow candle from toilet.
Annotator Summary: Move the candle from the sink to the cabinet under the sink, close it and and then pick
the candle from the top of the toilet in front of you.

Skills to Summarize: 1: Pick the pot on the left side up from the stove. 2: Set the bowl and knife on the table
next to the tomato.
Annotator Summary: Put the bowl with the knife in it next to the tomato.

Skills to Summarize: 1: Pick up the pen that’s in front of you that’s under the mug. 2: Put the pencil in the
mug that was above it. 3: Pick up the mug with the pencil in it.
Annotator Summary: Put the pen into the mug and pick up the mug.

Figure A.5: Randomly sampled, human language instruction annotations from the EVALINSTRUCT task set.

Skills to Summarize: 1: Pick up the lettuce on the counter. 2: Chill the lettuce in the fridge. 3: Put the chilled
lettuce on the counter, in front of the bread.
Annotator Summary: Put chilled lettuce on the counter.

Skills to Summarize: 1: Pick up an egg from o� of the kitchen counter. 2: Open the fridge, put the egg in to
chill for a few seconds and then take it back out. 3: Place the cold egg in the sink.
Annotator Summary: Chill an egg and put it in the sink.

Skills to Summarize: 1: Pick up the butter knife o� of the right side of the kitchen island. 2: Put the knife
handle down in the frying pan that is on the front left burner of the stove. 3: Pick up the frying pan with the
knife in it o� of the stove. 4: Put the frying pan with the knife in it into the sink basin to the right of the potato.
Annotator Summary: Put a frying pan with a knife in it into the sink.

Skills to Summarize: 1: Take the pencil from the desk. 2: Put the pencil on the desk.
Annotator Summary: Take the pencil from the desk, put it on the other side of the desk.

Skills to Summarize: 1: Pick up the left pillow on the chair. 2: Put the pillow on the sofa right of the newspaper.
3: Pick up the pillow on the chair. 4: Put the pillow on the sofa left of the newspaper.
Annotator Summary: Place two pillows on a sofa.

Figure A.6: Randomly sampled, human language instruction annotations from the EVALSCENE task set.
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Skills to Summarize: 1: Pick up the knife in front of the lettuce. 2: Slice the apple in the sink with the knife. 3:
Place the knife into the sink. 4: Pick up the sliced apple from the sink. 5: Place the apple slice into the pot on
the stove. 6: Pick up the pot from the stove. 7: Pick ump the pot from the stove.
Annotator Summary: Slice an apple for the pot on the stove and put the pot on the counter to the right of the
door.

Skills to Summarize: 1: Take the apple from the counter in front of you. 2: Place the apple in the sink in front
of you. 3: Take the knife by the sink in front of you. 4: Cut the apple in the sink in front of you. 5: Place the
knife in the sink in front of you. 6: Take an apple slice from the sink in front of you. 7: Heat the apple in the
microwave, take it out and close the microwave. 8: Place the apple slice in the sink in front of you.
Annotator Summary: Place a warm apple slice in the sink.

Skills to Summarize: 1: Pick up the loaf of bread. 2: Put the bread on the counter above the spatula. 3: Pick up
the knife that’s above and to the right of the loaf of bread. 4: Cut the top half of the loaf of bread into slices. 5:
Put the knife on the edge of the counter in front of you horizontally. 6: Pick up a slice of bread from the middle
of the loaf. 7: Cook the bread in the microwave then take it out and close the microwave door. 8: Throw the
cooked slice of bread away.
Annotator Summary: Put a microwaved slice of bread in the oven.

Skills to Summarize: 1: Pick the knife up from o� of the table. 2: Open the microwave, slice the potato, and
close the microwave. 3: Open the microwave, place the knife inside of it, and close the microwave. 4: Open
the microwave, pick up the potato slice inside, close the microwave. 5: Place the potato slice in the pan on
the stove. 6: Pick up the pan from the stove. 7: Open the refrigerator, place the pan inside, and close the
refrigerator.
Annotator Summary: Move the pan from the stove top to inside the black refrigerator.

Skills to Summarize: 1: Pick up the red tomato on the counter to the right of the stove. 2: Put the tomato onto
the island below the butter knife. 3: Pick up the butter knife o� of the kitchen island. 4: Slice up the tomato
on the kitchen island. 5: Place the butter knife onto the island to the right of the sliced tomato. 6: Pick up a
tomato slice o� of the kitchen island. 7: Open the fridge and put the tomato slice on the bottom shelf, then
close the door, after a couple seconds open the fridge and remove the tomato slice then close the door. 8: Open
the microwave door and place the tomato slice inside the microwave in front of the egg.
Annotator Summary: Put a chilled tomato slice into the microwave.

Figure A.7: Randomly sampled, human language instruction annotations from the EVALLENGTH task set.
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Skills to summarize: 1. Pick the clock up from the desk. 2. Turn the lamp on.
OPT-350m Summary: Look at the clock.
OPT-1.3b Summary: Look at the clock from the far side of the bed under the lamp light.
LLaMA-13b Summary: Look at the clock from the desk under the lamp light.

Skills to summarize: 1. Take the plate from the cabinet to the left of the stove. 2. Warm the plate in
the microwave, above the stove. 3. Put the plate in the cabinet.
OPT-350m Summary: Place the plate in the microwave.
OPT-1.3b Summary: Put the plate on the left side of the table.
LLaMA-13b Summary: Put a warm plate in the cabinet above the stove.

Skills to summarize: 1. Open the microwave, take out the potato and shut the door. 2. Put the potato
in the sink, turn the water on and o� again. Take the potato out of the sink. 3. Place the potato on
the counter, to the right of the sink.
OPT-350m Summary: Put the potato on the counter, to the left of the sink.
OPT-1.3b Summary: Open the microwave, take out the potato, and close the door.
LLaMA-13b Summary: Put a potato on the counter, next to the sink.

Figure A.8: Comparison of OPT-350m, OPT-1.3b [408], and LLaMA-13b summaries on 3 randomly sam-
pled sequences from our dataset. In general, as the model size increases, the summary becomes better.
LLaMA-13b summaries as a whole tend to be more descriptive and accurate. The smaller models tend
to regurgitate information from the original skills incorrectly, such as OPT-350m summarizing the third
example as putting a potato “to the left of the sink” when the original skill stated “to the right of the sink.”
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Task: Cut a potato and put a slice in the sink. (Fail)

Ground Truth

1. Pick up the knife from the sink.

2. Cut the potato on the second shelf in the
fridge.

3. Put the knife back in the sink.

4. Take a potato slice from the sink.

5. Put the slice in the sink.

SayCan Generated Plan

1. Pick up the knife from the sink.

2. Put the knife back in the sink.

Task: Move all computers onto the white dresser. (Fail)

Ground Truth

1. Place the computer on the white dresser.

2. Close the computer and pick up the com-
puter from the green bed.

3. Place the computer on the white dresser.

SayCan Generated Plan

1. Place the computer on the white dresser.

2. Place the computer on the white dresser.

Task: Move the phone from the dresser to the bed. (Success)

Ground Truth

1. Take the blue cell phone o� of the dresser.

2. Put the blue cell phone on the bed.

SayCan Generated Plan

1. Take the blue cell phone o� of the dresser.

2. Put the blue cell phone on the bed.

Figure A.9: Example plans from SayCan [7] evaluated on EVALINSTRUCT. For longer tasks SayCan has a
higher probability of generating any single incorrect step in a plan, leading to planning failures that will
prevent the language-conditioned policy from completing the task.
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Task: Place two pillows on a sofa. 

SayCan

SayCan-predicted Plan: 1. Pick up the pillow on the chair.

Completed 

Tasks

0/4

Task:  Take the pencil from the desk, put it on the other side of the desk. 

SayCan

SayCan-predicted Plan: 1. Take the pencil from the desk.        2. Put the pencil on the desk.

Completed 

Tasks

1/2

Figure A.10: Rollouts of SayCan on EVALSCENE. In these examples, SayCan predicts correct plan steps until
the policy su�ers from execution errors as it is not �ne-tuned for the unseen environments.
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SPRINT

AM

L-BC

Task: Throw away a microwaved slice of potato. Completed

Subtasks

8/8

1/8

0/8

(a) SPRINT successfully solves this task, while AM fails to slice the potato and repetitively iterates be-
tween putting the potato in the fridge and microwave. L-BC fails even to pick up the potato, as the task
annotation does not directly describe picking up a potato.

SPRINT

AM

L-BC

Task: Place a cooked potato slice inside the refrigerator. Completed

Subtasks

7/8

0/8

0/8

(b) SPRINT nearly solves this task, while AM picks up an egg instead of a potato. L-BC picks up random
objects not related to the annotation.

SPRINT

AM

L-BC

Task: Put a chilled tomato slice into the microwave. Completed

Subtasks

8/8

1/8

0/8

(c) SPRINT completes the entire task. AM picks up the tomato but fails to put it down onto the counter
and slice it. L-BC aimlessly wanders and picks up random objects.

Figure A.11: Visualizations of zero-shot policy rollouts on three tasks in the EVALLENGTH task set.
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SPRINT

AM

L-BC

Task: Place two pillows on a sofa. Completed

Subtasks

3/4

1/4

1/4

(a) SPRINT picks up and places one of the pillows on the sofa, and picks up the second but does not
manage to place the second on the sofa, thus completing 3/4 subtasks. AM and L-BC both learn to pick
up a pillow but never learned to place it in the correct spot.

SPRINT

AM

L-BC

Task: Take the pencil from the desk, put it on the other side of the desk. Completed

Subtasks

1/2

1/2

0/2

(b) SPRINT and AM both learn to pick up a pencil from the desk, although neither manage to put the
pencil down in the correct place “on the other side of the desk.” Meanwhile, L-BC never picks up the
pencil.

Figure A.12: Visualizations of policy rollouts on two tasks in the EVALSCENE task set, after �netuning each
method. These �oor plans were originally unseen to all agents until �netuning.
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Task: Serve milk in the bowl and butter and baked bread in the plate.

SPRINT

L-BC

Composite

Completed

Subtask

8/8

4/8

Figure A.13: SPRINT picks up the correct objects successfully and places in the right place accurately, with
the same order shown in the demonstration. L-BC composite model does the right thing on the milk diary
and butter diary but is not able to �nish any skills with the long bread.
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Appendix B

EXTRACT

B.1 Full Algorithm

Algorithm 3 EXTRACT Algorithm, Section 4.4.

Require: Dataset D, VLM, Target MDPM, Optional target task �ne-tuning dataset DM

1: Dd, CM ← OfflineSkillExtraction(D, VLM) ▷ Get discrete skill labels and clustering model,
Algorithm 4

2: Init q(z | ā, d), pa(ā | z, d), pd(d | s), pz(z | s, d) ▷ Skill argument encoder, skill decoder, discrete
skill prior, continuous argument prior

3: q, pa, pd, pz ← OfflineSkillLearning(Dd, q, pa, pd, pz) ▷ Learn skills o�ine, Algorithm 5
4: if DM exists then
5: DM,d ← Assign skills to DM with existing clustering model CM
6: q, pa, pd, pz ← OfflineSkillLearning(DM,d, q, pa, pd, pz) ▷ Optionally �ne-tune on target task
M

7: SkillBasedOnlineRL(M, pa, pd, pz) ▷ RL on target taskM, Algorithm 6

We present the full EXTRACT pseudocode in Algorithm 3. Algorithm 4 details o�ine skill extrac-

tion using a VLM, Algorithm 5 details the o�ine skill learning procedure, and Algorithm 6 details how to

perform online skill-based RL on downstream tasks using Soft Actor-Critic (SAC). Note that any entropy-

regularized algorithm can be used here with similar modi�cations, not just SAC. Di�erences from SAC

during online RL are highlighted in red. For further implementation details and hyperparameters of EX-

TRACT, see Appendix B.2.1.

225



Algorithm 4 O�ine Skill Extraction, Section 4.4.1.

1: procedure OfflineSkillExtraction(D, VLM)
2: Embeds← [] ▷ Init VLM embedding di�erences
3: for trajectory τ = [(s1, a1), ..., (sT , aT )] in D do

4: for (si, ai) in τ do

5: ei = VLM(si)− VLM(s1) ▷ Embedding di�erences, Equation (4.1)
6: Embeds.append(ei)

7: CM ← Init (K-Means) clustering model
8: Labels← CM (Embeds) ▷ Run unsupervised clustering to get cluster labels
9: Dd ← {} ▷ Init skill labeled dataset
10: for trajectory τ = [(s1, a1), ..., (sT , aT )] in D do

11: d1, ..., dT ← Get labels from Labels

12: d1, ..., dT ←MedianFilter(d1, ..., dT ) ▷ Smooth out labels, see Appendix B.2.1
13: Dd ← Dd ∪ [(s1, a1, d1), ..., (sT , aT , dT )]

14: return Dd, CM

Algorithm 5 O�ine Skill Learning, Section 4.4.2.

1: procedure OfflineSkillLearning(D, q, pa, pd, pz)
2: while not converged do

3: Sample τd from Dd
4: Train q, pa, pd, pz with Equation (4.2)

5: return q, pa, pd, pz

B.2 Experiment and Implementation Details

In this section, we list implementation details for EXTRACT (Appendix B.2.1), the speci�c environment

setups (Appendix B.2.3), and details for how we implemented baselines (Appendix B.2.2).

B.2.1 EXTRACT Implementation Details

EXTRACT implementation details follow in the same order as each method subsection was presented in

the main paper in Section 4.4.

B.2.1.1 O�line Skill Extraction

We �rst extract skills from a dataset D using a VLM by clustering VLM embedding di�erences of image

observations in D (see pseudocode in Algorithm 4).
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Algorithm 6 Skill-Based Online RL (with SAC [123]), Section 4.4.3. Red marks policy and critic loss
di�erences against SAC.

1: procedure SkillBasedOnlineRL(M, pa(ā | z, d), pd(d | s), pz(z | s, d)) ▷ Section 4.4.3
2: Freeze pa(ā | z, d), pd, pz weights
3: πd(d | s)← pd(d | s) ▷ Init πd as discrete skill prior pd
4: πz(z | s, d)← pz(z | s, d) ▷ Init πz as cont. argument prior pz
5: B ← {} ▷ Init bu�er B
6: for each rollout do
7: l← 0
8: dt ∼ πd(d | st) ▷ Sample discrete skill
9: zt ∼ πz(z | s, dt) ▷ Sample continuous argument for skill
10: a1, ..., aL, l1....lL ← ā ∼ pa(ā | zt, dt) ▷ Sample action sequence a1, ..., aL and progress

predictions l1, ..., ll up to max sequence length L, see ??.
11: for a in a1., ..., aL or until l ≥ 1 do

12: Execute actions inM, accumulating reward sum r̃t

13: B ← B ∪ {st, zt, r̃t, st′} ▷ Add sample to bu�er
14: (s, z, r̃, s′) ∼ B ▷ Sample from B
15: πd, πz ← max

πd,πz
Q(s, z, d)

16: −αzKL(πz(z | s, d) ∥ pz(· | s, d))
17: −αdKL(πd(d | s) ∥ pd(· | s)) ▷ Update policies, Equation (4.4)
18: Q← minQQ(s, z, d) = r(s, z, d) + γQ(s′, z′, d′)
19: −αzDKL(π(z | s, d) ∥ pz(· | s, d))
20: −αdDKL(π(d | s) ∥ pd(· | s)) ▷ Update critic
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Clustering. We use K-means for the clustering algorithm as it is performant, time-e�cient, and can be

easily utilized in a batched manner if all of the embeddings are too large to �t in memory at once.∗ When

extracting skills from the o�ine dataset D, we utilize K-means clustering on VLM embedding di�erences

with K = 8 in Franka Kitchen and LIBERO, as we found K = 8 to produce the most visually pleasing

clustering assignments in Franka Kitchen and we directly adapted the Franka Kitchen hyperparameters to

LIBERO to avoid too much environment-speci�c tuning. In FurnitureBench, we found K = 6 to produce

the most visually distinguishable clustering assignments.

Median Filtering. After performing K-means, we utilize a standard median �lter, as is commonly per-

formed in classical speaker diarization [16], to smooth out any possibly noisy assignments (see Figure 4.3).

Speci�cally, we use the Scipy scipy.signal.medfilt(kernel_size=7) [361] �lter for all environments.

This corresponds to a median �lter with window size 7 that slides over each trajectory’s labels and assigns

the median label within that window to all 7 elements. Empirically, we found that this increased the aver-

age length of skills as it reduced the occurrence of short, noisy assignments.

B.2.1.2 O�line Skill Learning

Here, we train a VAE consisting of skill argument encoder q(z | ā, d), skill decoder pa(ā | z, d), discrete

skill prior pd(d | s), and continuous skill argument prior pz(z | s, d) (see pseudocode in Algorithm 5).

Model architectures. We closely follow SPiRL’s model architecture implementations [282] as we build

upon SPiRL. The encoder q(z | ā, d) and decoder pa(ā | z, d) are implemented with recurrent neural

networks. The skill priors are both standard multi-layer perceptrons. The skill argument space z has 5

dimensions. In Kitchen and LIBERO, our β for the β-VAE KL regularization term in Equation (4.2) is 0.001.

∗We did perform preliminary experiments early on with DBSCAN, which doesn’t require presetting the number of clusters.
However, DBSCAN requires an ϵ parameter which we found to greatly a�ect the skill clustering results on our datasets, with
some values of ϵ resulting in very poorly clustered skills.
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Skill progress predictor. During training, for GPU memory reasons, we sample skill trajectories with

a maximum length as is common when training autoregressive models. In Franka Kitchen, this is heuris-

tically set to 30 based on reconstruction losses and in LIBERO, this is set to 40. In FurnitureBench, this

is set to 30. If a skill trajectory is longer than this maximum length, we simply sample a random con-

tiguous sequence of the maximum length within the trajectory. To ensure that predicted action sequences

stay in-distribution with what was seen during training, we also use these maximum lengths as maximum

skill lengths during online RL; e.g., if a skill runs for 30 timesteps in Franka Kitchen without stopping, we

simply resample the next skill (see Algorithm 6).

As discussed in Section 4.4.2, given the variable lengths of action sequences ā, the decoder pa(ā | z, d)

is trained to generate a continuous skill progress prediction value l at each timestep. This value represents

the proportion of the skill completed at the current time. During online policy rollouts, the execution of

the skill is halted when l reaches 1. To learn this progress prediction value, we formulate it as follows:

when creating labels for such a sequence, we assign a label to each time step, denoted as yt, based on its

position in the sequence. Speci�cally, yt is set to
t
N

for each time step t, whereN represents the sequence

length. To train the model for this function, we use the standard mean-squared error loss. This ensures

that the model learns to predict the end of an action sequence while also ensuring that it receives dense,

per-timestep supervision while training function.

Additional target task �ne-tuning. Optionally, for very di�cult tasks, some target-task demonstra-

tions may be needed [355, 210, 201]. We perform additional target task �ne-tuning in LIBERO [201] and

FurnitureBench [135]. We use the learned clustering model that was trained to cluster the original dataset

D to directly assign labels to the task-speci�c dataset DM without updating the clustering algorithm

parameters (see Algorithm 3 Line 5). Then, we �ne-tune the entire model, q, pa, pd, pz , with the same

objective in Equation (4.2) on the labeled target-task dataset DM,d.
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B.2.1.3 Skill-Based Online RL

For online RL, we utilize the pre-trained skill decoder pa(ā | z, d), and the skill priors pd(d | s), pz(z | s, d)

for skill-based policy learning (see Algorithm 6).

Policy learning. Our policy skill-based policy π(d, z | s) is parameterized as a product of a discrete

skill selection policy πd(d | s) and a continuous argument selection policy πz(z | s, d) (see Equation (4.4)).

To train with actor-critic RL, we sum over the policy losses in each discrete skill dimension weighted by

the probability of that skill, similar to discrete SAC loss proposed by Christodoulou [61]:

∑

d

πd(d | s)
(

Q(s, z, d)− αzKL(πz(z | s, d) ∥ pz(· | s, d))− αdKL(πd(d | s) ∥ pd(· | s))
)

. (B.1)

Meanwhile, critic losses are computed with the skill d that the policy actually took. Our critic networks

Q(s, z, d) take the image s and argument z as input and have a d-headed output for each of the d skills.

We do not use automatic KL tuning (standard in SAC implementations [123]) as we found it to be

unstable; instead, we manually set entropy coe�cients αd and αz for the policy (Equation (4.4)) and critic

losses. In Kitchen, αd = 0.1, αz = 0.01; in LIBERO αd = 0.1, αz = 0.1. These values are obtained by

performing a search over αd = {0.1, 0.01} and αz = {0.1, 0.01}.

In FurnitureBench, we set αz = 0.5 and αd = 2.0 to prevent the policy losses from diverging signi�-

cantly as we use RLPD [23] with a high critic update ratio of 2 per environment step and a higher policy

update ratio of 2 per environment step.

B.2.2 Baseline Implementation Details

Oracle. Our oracle baseline is RAPS [72]. We run RAPS to convergence and report �nal performance

numbers because its expert-designed skills operate on a di�erent control frequency; it takes hundreds of

times more low-level actions per environment rollout. We only evaluated this method on Franka Kitchen
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as the authors did not evaluate on our other environments, and we found the implementation and tuning

of their hand-designed primitives to work well on other environments to be non-trivial and di�cult to

make work.

SPiRL. We adapt SPiRL, implemented on top of SAC [123], to our image-based settings and environ-

ments using their existing code to ensure the best performance. For each environment, we tuned SPiRL

parameters (entropy coe�cient, automatic entropy tuning, network architecture, etc.) �rst and then built

our method upon the �nal SPiRL network architecture to ensure the fairest comparison. SPiRL uses the

exact same datasets as ours but without skill labels. We also experimented with changing the length of

SPiRL action sequences, and similar to what was reported in Pertsch, Lee, and Lim [282], we found that

a �xed length of 10 worked best. We also found �xed prior coe�cients KL divergence to perform better

with SPiRL for our environments than automatic KL tuning.

EXTRACT-UVD. Universal Value Decomposer (UVD) segments trajectories into sub-trajectories us-

ing VLM features for image goal-conditioned behavior cloning [409]. It was originally made for goal-

conditioned imitation learning; we combine it with EXTRACT and adapt it for our setting of online

reward-based reinforcement learning by using it to segment subtrajectories with the same VLM as EX-

TRACT, then treating each subtrajectory as a separate skill trajectory to condition EXTRACT’s model on

(without discrete skill extraction process). Essentially, this model acts as EXTRACT but with skill trajecto-

ries determined by UVD’s trajectory segmentation method instead of that of EXTRACT. This also makes

the comparison against our method more fair as it receives temporally extended skills, just like SPiRL or

EXTRACT.
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BC. We implement behavior cloning with network architectures similar to ours and using the same

datasets. Our BC baseline learns an image-conditioned policy π(a | s) that directly imitates single-step

environment actions. We �ne-tune pre-trained BC models for online RL with SAC [123].

SAC. We implement Soft-Actor Critic [123] directly operating on low-level environment actions with an

identical architecture to the BC baseline. It does not pre-train on any data.

B.2.3 Environment Implementation Details

(a) Franka Kitchen (b) LIBERO (c) FurnitureBench

Figure B.1: Our two image-based, continuous control robotic manipulation evaluation domains. (a)

Franka Kitchen: The robot must learn to execute an unseen sequence of 4 sub-tasks in a row. (b)

LIBERO: We evaluate 4 task suites of 10 tasks, each consisting of long-horizon, unseen tasks with new
object, spatial, and goal transfer scenarios. (c) FurnitureBench: We evaluate online RL adaptation to
unseen object and gripper placement randomizations.

Franka Kitchen. We use the Franka Kitchen environment from the D4RL benchmark [104] originally

published by Gupta et al. [118] (see Figure B.1a). The pre-training dataset comes from the “mixed” dataset

in D4RL consisting of 601 human teleoperation trajectories each performing 4 subtasks in sequence in the

environment (e.g., open the microwave). Our evaluation task comes from Pertsch, Lee, and Lim [282],

where the agent has to perform an unseen sequence of 4 subtasks. The original dataset contains ground

truth environment states and actions; we create an image-action dataset by resetting to ground truth states

in the dataset and rendering the corresponding images. For all methods, we perform pre-training and RL
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with 64x64x3 RGB images and a framestack of 4. Sparse reward of 1 is given for each subtask, for a

maximum return of 4. The agent outputs 7-dimensional joint velocity actions along with a 2-dimensional

continuous gripper opening/closing action. Episodes have a maximum length of 280 timesteps.

LIBERO. LIBERO [201] is a continual learning benchmark built upon Robosuite [420] (see Figure B.1b).

For skill extraction and policy learning, we use the agentview_rgb 3rd-person camera view images pro-

vided by the LIBERO datasets and environment. For pre-training, we use the LIBERO-90 pre-training

dataset consisting of 4500 demonstrations collected from 90 di�erent environment-task combinations each

with 50 demonstrations. We condition all methods on 84x84x3 RGB images with a framestack of 2 along

with language instructions provided by LIBERO. We condition methods on language by embedding in-

structions with a pre-trained, frozen sentence embedding model [298], all-MiniLM-L6-v2, to a single

384-dimensional embedding and then feeding it to the policy. For EXTRACT, we condition on language

by conditioning all networks on language; q, pz, pa, pd are all additionally conditioned on the language

embedding and thus the skill-based policy is also conditioned on language. We also condition all networks

in all baselines on this language embedding in addition to their original inputs.

When performing additional �ne-tuning to LIBERO-{10, Goal, Spatial, Object}, for all methods

(except SAC) we use the given task-speci�c datasets each containing 50 demonstrations per task before

then performing online RL. In LIBERO-{Goal, Spatial, Object}, sparse reward is provided upon suc-

cessfully completing the task, so the maximum return is 1.0. In LIBERO-10, tasks are longer-horizon and

consist of two subtasks, so we provide rewards at the end of each subtask for a maximum return of 2.0.

Episodes have a max length of 300 timesteps.

FurnitureBench. FurnitureBench [135] is a real-world furniture assembly benchmark, where the task is

to assemble 3D printed furniture pieces with a single Franka Arm (see Figure B.1c). We closely reproduced
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the environment setup presented in the original paper through manual camera calibration of RealSense

D435 cameras. For skill extraction and policy learning, we use two cameras, a wrist-mounted camera and

a front mounted camera facing the arm workspace. To cluster skills, we embed both the wrist camera and

front camera images with R3M and concatenate the embedding before clustering with K-Means (K = 6).

Following the baselines implemented in the paper, we encode all RGB images with the frozen R3M video

encoder to a 2048 dimensional vector �rst for all components of skill/policy learning. Also following

the paper, we don’t use any framestacking. Additionally, despite the presence of AprilTags, we do not

use AprilTag-based state estimation for any part of our experiments; we perform purely image-based

continuous control.

Figure B.2: 3D-printed
FurnitureBench table used
for our one leg assembly
task.

The pre-training dataset consists of 500 demonstrations from the one-leg

assembly task collected by Heo et al. [135]. See Figure B.2 for an image of the

pieces used. The environment action space is absolute 3D position control

plus a 6-dimensional rotation representation [414]. We run real-world online

RL with RLPD [23], a sample-e�cient actor-critic algorithm that uses a high

critic update ratio, layer norms in the Q functions, a large number of Q func-

tions, and samples from o�ine data and new online-collected data at a 50/50

ratio. We did not have to modify the policy/training objectives in Algorithm 6

from SAC for RLPD. To train EXTRACT’s high-level policy with o�ine data in RLPD, we use the skill d in

the o�ine trajectories as high-level skill selection actions for π(d | s) and encode o�ine sampled trajectory

actions with the pre-trained, frozen encoder q(z | ā, d) to obtain continuous arguments z for π(z | s, z).

The o�ine data also comes with sub-task completion timestamps (picked up table top, placed it into the

corner, picked up leg, inserted leg, screwed in) that we convert into +1 rewards for RLPD training for a

maximum return of 5.
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In our real-world RL setup, we run all methods for 100 trajectories with variations of 5cm for the

initial object positions and end e�ector positions, along with ±15 degrees of initial end e�ector rotation.

Meanwhile, we use a dataset of 500 demonstrations from the “low randomness” dataset split for one-leg

assembly from [135], which contains no intentional randomness for both the object and end e�ector poses.

This is challenging as the robot arm, camera positioning, etc., and now initial object and end e�ector

locations, are all di�erent from those in the dataset as collected by the FurnitureBench authors and the

policy must transfer its knowledge to this new setting to solve the task. We provide two rewards when

training online RL:+1 for completing an assembly sub-task successfully and 0 for all other timesteps. The

max return is also 5.

Episodes have a maximum length of 500 timesteps. Each trajectory takes approximately 50s of robot

interaction time when run to completion and 30s to reset, resulting in∼1.5 minutes of real-world time per

trajectory.

B.3 Additional Experiments and Qualitative Visualizations

In this section, we perform additional experiments and ablation studies. In Appendix B.3.1, we visualize 2D

PCA plots of clusters generated by EXTRACT in all environments. In Appendix B.3.2, we analyze statistics

of the skill distributions generated by EXTRACT. In Appendix B.3.3 for more ablation studies comparing

using CLIP [289] or proprioceptive states instead of R3M [252] for clustering feature extraction. Finally, in

Appendix B.3.4 we analyze skills extracted through UVD [409] against ours.
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B.3.1 Additional PCA Cluster Visualizations

Cluster 3

Cluster 6

Cluster 2
Cluster 0

Cluster 4

Cluster 1

Cluster 5
Cluster 7

PCA Cluster Embeddings

(a) Franka Kitchen.

Cluster 0

Cluster 4

Cluster 3

Cluster 6Cluster 5

Cluster 7
Cluster 2

Cluster 1

PCA Cluster Embeddings

(b) LIBERO.

Figure B.3: 100 randomly sampled trajectories from environment pre-training datasets after being clustered
into skills and visualized in 2D with PCA. Clusters are well-separated, even in just 2-dimensions with a
linear transfromation.

Here we display PCA skill cluster visualizations in Figure B.3. Franka Kitchen clusterings are very dis-

tinguishable, even in 2 dimensions. (this is the same embedding plot as in Figure 4.4 in the main paper).

LIBERO-90 clusters still demonstrate clear separation, but are not as separable after being projected down

to 2 dimensions (from 2048 original dimensions). However, in Figure B.8 we clearly see distinguishable

behaviors among di�erent skills in LIBERO.
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B.3.2 Visualizing Cluster Statistics
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(a) Franka Kitchen,K = 8.
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(b) LIBERO,K = 8.
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(c) FurnitureBench,K = 6.

Figure B.4: Skill/clustering statistics in all environments. We use the R3M VLM [252] and K = 8 for
K-means. In FurnitureBench, K = 6. The top plots are skill length histograms for all skill trajectories
combined, middle plots correspond to box-and-whisker plots with skill ID on the x-axis and lengths on the
y-axis, and the bottom plots represent distributions of skill lengths separated by color for each skill ID.238



We visualize skill clustering statistics in all pre-training environments in Figure B.4. The plots demonstrate

that average skill lengths are about 30 timesteps for all environments and that there is clear separation

among the di�erent skills just in terms of the distributions of skill lengths that they cover. For a qualitative

look at the skills, see Appendix B.4.

B.3.3 Additional Ablation Studies

Here, we augment Section 4.5.4 with additional ablation studies. We compare against using CLIP [289]

embeddings di�erences instead of R3M and against Proprio, i.e., robot joint and gripper state di�erences,

on Franka Kitchen in Figure B.5.
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Figure B.5: EXTRACT
with R3M vs with CLIP
or proprioceptive states.

We originally chose R3M as the base VLM because, in contrast with R3M,

CLIP is trained on images, not videos, on a general dataset of image-language

pairs instead of a dataset of humans performing real-world tasks from an ego-

centric viewpoint that more closely mimics robotics environments (Ego4D,

[112]). However, we can see that EXTRACT with CLIP performs on par with

EXTRACT with R3M. This demonstrates that EXTRACT is robust to the choice

of VLM for clustering; it’s likely that CLIP was pre-trained on su�cient data

to extract useful embedding di�erences for clustering. However, propriocep-

tive state di�erences are not as e�ective as proprioception can be di�cult to directly obtain high-level,

semantically meaningful skills from.

B.3.4 Visualizing UVD’s Skill Extraction vs Ours

In Section 4.5.3 we found EXTRACT with UVD’s skill extraction method to have unstable RL performance

in Franka Kitchen and overall performed worse than EXTRACT with our skill extraction method.
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To analyze why, we plot R3M skill embeddings of skill trajectories extracted by EXTRACT against

those of UVD, projected to 2 dimensions, in Franka Kitchen in Figure B.6. We can see that UVD-generated

trajectory embeddings are much harder to distinguish from each other than EXTRACT’s, as evidenced by

the distinct separation seen in the 4 corners of the plot compared to UVD.

EXTRACT PCA Skill Embeddings UVD PCA Skill Embeddings

Figure B.6: 100 randomly sampled trajectories from Franka Kitchen after
being projected to 2D with PCA. EXTRACT embeddings are identical to
those in Figure B.3.

This di�erence in trajec-

tory separability, combined

with EXTRACT’s skill clus-

tering approach that forms

a discrete-continuous skill space

for RL policies to learn new

tasks with, helps explain the

instability of RL with UVD in

Franka Kitchen.

B.4 Visualizing skill

trajectories

Here, we visualize skill trajectories in our environments. In Figure B.7, we visualize purely randomly

sampled clusters (i.e., without any cherry-picking) in Franka Kitchen, where we see skills are generally

semantically aligned. For example, skill 3 trajectories correspond tomanipulating knobs, skill 5 trajectories

reach for the microwave door, and skill 7 trajectories are reaching for the cabinet handle.

We visualize LIBERO skills in Figure B.8, where we can also see that skills are generally aligned.

240



C
lu

st
e
r
0

C
lu

st
e
r
1

C
lu

st
e
r
2

C
lu

st
e
r
3

C
lu

st
e
r
4

C
lu

st
e
r
5

C
lu

st
e
r
6

C
lu

st
e
r
7

Figure B.7: Kitchen skill visualizations. We randomly sample 2 labeled skill trajectories (no cherry-picking)
and visualize the trajectory’s images in sequence after labeling with EXTRACT’s skill extraction phase.
Clusters are generally semantically aligned.
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Figure B.8: LIBERO. We randomly sample 2 labeled skill trajectories (no cherry-picking) and visualize
the trajectory’s images in sequence after labeling with EXTRACT’s skill extraction phase. Clusters are
generally semantically aligned.
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B.5 EXTRACT RL Performance Analysis

Figure B.9: Skill lengths histogram of actually used EXTRACT skills in Franka Kitchen at training conver-
gence. As explained in Appendix B.2.1, we limit skill execution lengths to 30 in Franka Kitchen.

Our method’s performance improvement over SPiRL is likely due to two reasons: longer average skills

and a semantically structured skill-space instead of the random latent skills that SPiRL learns. In Sec-

tion 4.5.3 we analyze the semantically structured skill-space. Here, we additionally analyze the longer

average skills.

As plotted in Appendix Figure B.4, EXTRACT extracts skills of various lengths, many of which are

quite long. This translates into longer-executed skills: we plot a histogram of the lengths of the skills

the skill-based policy actually learns to use at convergence in Franka Kitchen in Figure B.9. EXTRACT-

executed skills average 25 timesteps in length as compared to 10 for SPiRL. We experimented with longer

skill lengths for SPiRL, but online RL performance su�ered, a �nding consistent with results presented in

their paper [282].

Longer skills shorten the e�ective time horizon of the task by a factor of the average skill length for the

skill-based agent because the skill-based agent operates on an MDP where transitions are de�ned by the

end of execution of a skill which can be comprised of many low-level environment actions. By shortening

the task time horizon, the learning e�ciency of temporal-di�erence learning RL algorithms [339] can be
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improved by, for example, reducing value function bootstrapping error accumulation as there are less

timesteps between a sparse reward signal and the starting state.

B.6 Limitations

While EXTRACT enables e�cient transfer learning, we still need the initial dataset from environments

similar to the target environments for learning skills from. It would be useful to extend EXTRACT to

data from other robots or other environments signi�cantly di�erent from the target environment to ease the

data collection burden—possibly wth sim to real techniques [400]. Furthermore, in future work, we plan

to combine our method with o�ine RL [107, 278, 187, 330, 97, 208] to learn skills from suboptimal data

without the need to interact with an environment, targeting even greater sample e�ciency. Furthermore,

while EXTRACT is more sample-e�cient than all other comparisons, it still requires many online samples

to learn to execute new tasks with RL.We plan to investigate future directions that will allow us to combine

o�ine learning approaches such as o�ine reinforcement learning with skill learning on the o�ine dataset

to allow even more e�cient transfer. Finally, EXTRACT requires image observations for the VLMs; skill

learning from more input modalities would be interesting future work. Processing more input modalities

to learn skills would be interesting future work.
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Figure C.1: Examples of various robot tasks and environments that HAMSTER can handle. See more details in our teaser video
at https://hamster-robot.github.io/.

Appendix C

HAMSTER

C.1 VLM Finetuning Dataset Details

Pixel Point Pred Data. Our point prediction dataset comes from Robopoint [398]. 770k samples in our

point prediction dataset contain labels given as a set of unordered points such as po = [(0.25, 0.11), (0.22, 0.19), (0.53, 0.23)],

or bounding boxes in [(cx, cy, w, h)] style. Other than that, following Robopoint [398], we use the VQA

dataset [204] with 660k samples which answer VQA queries in natural language such as “What is the per-

son feeding the cat?” We keep these data as is because these VQA queries are likely to bene�t a VLM’s
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Hamster VLM: VILA-1.5-13b
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Figure C.2: (a): Examples of training data in Do� used to train HAMSTER’s VLM. (b): The data used to
train HAMSTER’s low-level policies.

semantic reasoning and visual generalization capabilities; we �ne-tune HAMSTER’s VLM on the entire

Robopoint dataset as given.

Simulation Data. We selected 81 RLBench tasks out of 103 to generate data by removing tasks with

poor visibility on the front_cam view in RLBench. We use the �rst image in each episode combined with

each language instruction. The �nal dataset contains around 320k trajectories.

Real Robot Data. For the Bridge [362] dataset, which only provides RGB images, we extract trajectories

by iteratively estimating the extrinsic matrix for each episode. In each scene, we randomly sample a few

frames and manually label the center of the gripper �ngers. Using the corresponding end-e�ector poses,

we compute the 3D-2D projection matrix with a PnP (Perspective-n-Point) approach. We then apply this

projectionmatrix to the episodes andmanually check for anymisalignments between the projected gripper

and the actual gripper. Episodes exhibiting signi�cant deviations are �ltered out, and a new round is started

to estimate their extrinsic matrix.

For DROID [163], a large portion of the dataset contains noisy camera extrinsics information that do

not result in good depth alignment. Therefore, we �lter out trajectories with poor-quality extrinsics as

measured by the alignment between the projected depth images and the RGB images. This results in∼45k
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trajectories (∼22k unique trajectories as trajectories each have 2 di�erent camera viewpoints) which we

use for constructing the VLM dataset Do� as described in Section 5.4.1.

C.2 Implementation and Architecture Details

HAMSTER Prompt

In the image, please execute the command described in ⟨quest⟩{quest}⟨/quest⟩.
Provide a sequence of points denoting the trajectory of a robot gripper to achieve the goal.
Format your answer as a list of tuples enclosed by ⟨ans⟩ and ⟨/ans⟩ tags. For example:
⟨ans⟩[(0.25, 0.32), (0.32, 0.17), (0.13, 0.24), ⟨action⟩Open Gripper⟨/action⟩, (0.74,

0.21), ⟨action⟩Close Gripper⟨/action⟩, ...]⟨/ans⟩
The tuple denotes the x and y location of the end e�ector of the gripper in the image. The action tags indicate
the gripper action.
The coordinates should be �oats ranging between 0 and 1, indicating the relative locations of the points in the
image.

Figure C.3: The full text prompt we use to train HAMSTER with on simulation and real robot data (Sec-
tion 5.4.1). We also use this prompt for inference.

C.2.1 VLM Implementation Details

VLM Prompt. We list the prompt for both �ne-tuning on sim and real robot data and evaluation in

Figure C.3. We condition the model on an image and the prompt, except when training on Pixel Point

Prediction data (i.e., from Robopoint [398]) where we used the given prompts from the dataset. Note

that we ask the model to output gripper changes as separate language tokens, i.e., Open Gripper/Close

Gripper, as opposed to as a numerical value as shown in simpli�ed depictions like Figure 5.2.

VLM Trajectory Processing. As mentioned in Section 5.4.1, one problem with directly training on the

path labels po is that many paths may be extremely long. Therefore, we simplify the paths po with the

Ramer-Douglas-Peucker algorithm [295, 83] that reduces curves composed of line segments to similar

curves composed of fewer points. We run this algorithm on paths produced by simulation and real robot
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data to generate the labels po for Do�. We use tolerance ϵ = 0.05, resulting in paths that are around 2-5

points for each short horizon task.

VLM Training Details. We train our VLM, VILA1.5-13B [198], on a node equipped with eight NVIDIA

A100 GPUs, each utilizing approximately 65GB of memory. The training process takes about 30 hours to

complete. We use an e�ective batch size of 256 and a learning rate of 1 × 10−5. During �ne-tuning, the

entire model—including the vision encoder—is updated.

C.2.2 Low-level Policy Training Details

We train RVT2 [110] and 3D-DA [162] as our lower-level policies. We keep overall architecture and training

hyperparameters the same as paper settings. Speci�c details about how the inputs were modi�ed other

than the 2D path projection follow.

For low-level policy training, we train the policies on ground truth paths constructed by projecting

trajectory end-e�ector points to the camera image. In order to also ensure the policies are robust to possible

error introduced byHAMSTERVLMpredictions during evaluation, we add a small amount of randomnoise

(N(0, 0.01)) to the 2D path (x, y) image points during training to obtain slightly noisy path drawings. No

noise was added to the gripper opening/closing indicator values.

RVT2 [110]. We remove the language instruction for RVT-2 when conditioning on HAMSTER 2D paths.

3D-DA [162]. In simulated experiments in Colosseum, no changes were needed. In fact, we saw a per-

formance drop for HAMSTER+3D-DA when removing language for Colosseum tasks and a small drop in

performance when using simpli�ed language instructions. This is likely due to 3D-DA’s visual attention

mechanism which cross attends CLIP language token embeddings with CLIP visual features, therefore

detailed language instructions are bene�cial.
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RT-Trajectory GPT-4o Prompt

In the image, please execute the command described in ’{quest}’.
Provide a sequence of keypoints denoting a trajectory of a robot gripper to achieve the goal. Keep in mind these
are keypoints, so you do not need to provide too many points.
Format your answer as a list of tuples enclosed by <ans> and </ans> tags. For example:
<ans>[(0.25, 0.32), (0.32, 0.17), (0.13, 0.24), <action>Open Gripper</action>, (0.74,

0.21), <action>Close Gripper</action>, ...]</ans>

The tuple denotes point x and y location of the end e�ector of the gripper in the image. The action tags indicate
the gripper action.
The coordinates should be �oats ranging between 0 and 1, indicating the relative locations of the points in the
image.
The current position of the robot gripper is: {current_position}. Do not include this point in your answer.

Figure C.4: The full text prompt we use to prompt RT-Trajectory with GPT4-o.

In real-world experiments, we simplify the language instruction in the same way as for RVT2 when

conditioning on HAMSTER 2D paths to encourage following the trajectory more closely with limited

data. In addition, we reduced the embedding dimension of the transformer to 60 from 120, removed

proprioception information from past timesteps, and reduced the number of transformer heads to 6 from

12 in order to prevent over�tting.

C.3 Real World Experiment Details

C.3.1 Training Tasks and Data Collection

For our real-world experiments, we collected all data using a Franka Panda arm through human teleoper-

ation, following the setup described in Khazatsky et al. [163]. Below, we describe the training tasks:

Pick and place. We collected 220 episodes using 10 toy objects. In most of the training data, 2 bowls

were placed closer to the robot base, while 3 objects were positioned nearer to the camera. The lan-

guage goal for training consistently followed the format: pick up the {object} and put it in the

{container}.
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RT-Trajectory Code as Policies Prompt

Task Instruction: {task_instruction}
Robot Constraints:

• The robot arm takes as input 2D poses with gripper open/closing status of the form
(x, y, gripper_open == 1)

• The gripper can open and close with only binary values

• The workspace is a 1× 1 square centered at (0.5, 0.5)

• The x-axis points rightward and y-axis points downward.

Please write Python code that generates a list of 2D poses and gripper statuses for the robot to follow. Include
Python comments explaining each step. Assume you can use numpy or standard Python libraries, just make
sure to import them.
Enclose the start and end of the code block with <code> and </code> so that it can be parsed. Make sure that
it is a self-contained script such that when executing the code string, there is a variable named robot_poses
which is a list of poses of the form: [(x, y, gripper), (x, y, gripper), ...].
Scene Description:

<code>

{scene_description}

</code>

Figure C.5: The full text prompt we use for RT-Trajectory with Code-as-Policies on top of GPT4-o. The
scene description at the bottom comes from an open-vocabulary object detector describing each detected
object and its bounding box in the image based on the task instruction.

250



Knock down objects. We collected 50 episodes with various objects of di�erent sizes. Typically, 3

objects were arranged in a row, and one was knocked down. The language goal for training followed the

format: push down the {object}.

Press button. We collected 50 episodes with 4 colored buttons. In each episode, the gripper was teleop-

erated to press one of the buttons. The language goal followed the format: press the {color} button.

When training RVT2, which requires keyframes as labels, in addition to labeling frames where the

gripper performs the open gripper and close gripper actions, we also included frames that capture

the intermediate motion as the gripper moves toward these keyframes.

C.3.2 Baseline Training Details

OpenVLA [165]. Following Kim et al. [165], we only utilize parameter e�cient �ne-tuning (LoRA) for all

of our experiments, since they showed that it matches full �ne-tuning performance while beingmuchmore

e�cient. We follow the recommended default rank of r=32. We opt for the resolution of 360 x 360 to match

all of the baseline model’s resolutions. We also follow the recommended practice of training the model

until it surpasses 95% token accuracy. However, for some �ne-tuning datasets, token accuracy converged

near 90%. We selected the model checkpoints when we observed that the token accuracy converged, which

usually required 3,000 to 10,000 steps using a global batch size of either 16 or 32. Training was conducted

with 1 or 2 A6000 gpus (which determined the global batch size of 16 or 32). Emprically, we observed

that checkpoints that have converged showed very similar performance in the real world. For example,

when we evaluate checkpoint that was trained for 3,000 steps and showed convergence, evaluating on a

checkpoint trained for 5,000 steps of the same run resulted in a very similar performance.
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RT-Trajectory [115]. We implement two versions of RT-Trajectory for the comparison in Table C.2.

The �rst (0-shot GPT-4o) directly uses GPT-4o to generate 2D paths with a prompt very similar to the one

we use for HAMSTER, displayed in Figure C.4.

The second version implements RT-Trajectory on top of a Code-as-Policies [194], as described in RT-

Trajectory. We use OWLv2 [244] to perform open-vocabulary object detection on the image to generate a

list of objects as the scene description and then prompt RT-Trajectory with the prompt shown in Figure C.5.

We also use GPT-4o as the backbone for this method.

C.3.3 Evaluation Tasks

We evaluate our method on the tasks of pick and place, knock down object, and press button

across various generalization challenges, as illustrated in Figure 5.4. Detailed results are available in ??.

Following [165], we assign points for each successful sub-action. For VLM, human experts are employed

to assess the correctness of the predicted trajectories.

C.4 Extended Results

C.4.1 Impact of Design Decisions on VLM performance

To better understand the transfer and generalization performance of the proposed hierarchical VLAmodel,

we analyze the impact of various decisions involved in training the high-level VLM. We conduct a human

evaluation of di�erent variants of a trained high-level VLM on a randomly collected dataset of real-world

test images, as shown in Figure 5.7. We ask each model to generate 2D path traces corresponding to in-

structions such as “move the block on the right to Taylor Swift” or “screw the light bulb in the lamp” (the

full set is in Appendix C.4.2). We then provide the paths generated by each method to human evalua-

tors who have not previously seen any of the models’ predictions. The human evaluators then rank the

predictions for each method; we report the average rank across the samples in Table C.2.

252



Category Task OpenVLA RVT2 RVT2+Sketch 3DDA 3DDA+Sketch

Basic pick up the corn and put it in the black bowl 1 1 1 0 0.25
Basic pick up the grape and put it in the white bowl 1 0.75 1 0 1
Basic pick up the milk and put it in the white bowl 0 1 1 0 0.25
Basic pick up the salt bottle and put it in the white bowl 0.75 0.5 1 0 0
Basic pick up the shrimp and put it in the red bowl 0.75 0.5 1 0 1
Basic pick up the cupcake and put it in the red bowl 0 0.5 0.5 0.25 1
Basic press down the red button 0.5 0 1 0 1
Basic press down the green button 0 1 0 0 0.25
Basic press down the yellow button 0 0 1 0 1
Basic press down the blue button 0.5 0 1 0 0.5
Basic push down the green bottle 0.5 0 0.5 0 1
Basic push down the pocky 0 1 1 0 0.5
Basic push down the red bag 0.5 0.5 0 0 0.5
Basic push down the bird toy 0 0 0 0 0.5
Basic push down the yellow box 1 0 1 0 0.5

Object and Goal pick up the salt bottle and put it in the white bowl 1 1 1 0.5 1
Object and Goal pick up the banana and put it in the black bowl 0.25 0.25 1 0.5 1
Object and Goal pick up the grape and put it in the black bowl 1 0.25 0.5 1 1
Object and Goal pick up the carrot and put it in the red bowl 0.75 0 1 0.5 1
Object and Goal pick up the milk and put it in the white bowl 0.25 0 1 0 0.25
Object and Goal pick up the shrimp and put it in the white bowl 0.25 0.75 0.5 0.25 1
Object and Goal pick up the cupcake and put it in the black bowl 0.25 0 1 0.5 0.75
Object and Goal pick up the icecream and put it in the black bowl 0.25 0 0.5 0.5 1
Object and Goal pick up the corn and put it in the red bowl 1 0 1 1 1
Object and Goal pick up the green pepper and put it in the red bowl 0.75 0 0.5 0 0.25
Object and Goal pick up the orange and put it in the white bowl 0.25 0 0 0 0

Visual(Table Texture) pick up the salt bottle and put it in the white bowl 1 1 1 0 1
Visual(Table Texture) pick up the banana and put it in the black bowl 0.25 0.25 0.75 0.5 0.75

Visual(lighting) pick up the grape and put it in the black bowl 0.25 0 0.5 0.25 0
Visual(lighting) pick up the carrot and put it in the red bowl 0.75 0 1 0 0.75
VIsual(clutter) pick up the milk and put it in the white bowl 0.75 0.25 1 0.25 1
VIsual(clutter) pick up the shrimp and put it in the red bowl 0.75 0.5 0 0 0.5
Visual(mix) pick up the green pepper and put it in the red bowl 0.25 0 1 0 0.25
Visual(mix) pick up the salt bottle and put it in the white bowl 0.25 0 0.25 0.25 1

Visual(appearance change) pick up the green pepper and put it in the black bowl 1 0 0.5 0 1
Visual(appearance change) pick up the salt bottle and put it in the black bowl 1 1 1 0 1

Visual(Table Texture) press down the red button 1 1 0 0 0.5
Visual(lighting) press down the green button 1 0 0.5 0 0.5
VIsual(clutter) press down the yellow button 0 0 0.5 0 0.5
Visual(mix) press down the blue button 0 0 0 0 0.5

Visual(Table Texture) push down the pocky 0 1 0 0 0
VIsual(clutter) push down the green bottle 1 0.5 1 0 1
VIsual(clutter) push down the chocolate box 1 0 0 0 1
Visual(mix) push down the green bottle 0 0 0.5 0 1
Language pick up the sweet object and put it in the red bowl 1 1 1 0 1
Language pick up the spicy object and put it in the red bowl 1 0 1 0 0.75
Language pick up the salty object and put it in the red bowl 0 0 1 0 1
Language pick up the object with color of cucumber and put it in the red bowl 0 0 1 0.25 0.75
Language pick up the object with color of lavender and put it in the black bowl 0 0 1 0 1

Language
pick up the object with the color of sky
and and put it in the container with the color of coal

1 0 0 0.25 1

Language
pick up the block with the color of sun�ower
and put it in the container with the color of enthusiasm

0 0.25 1 0 1

Language press the button with the color of �re 0.5 0 1 0 0.5
Language press the button with the color of cucumber 0 0 1 0 0.5
Language press the button with the color of sky 0 0 0 0.5 1
Language press the button with the color of banana 0 0 0 0 0.5
Language push down the object with color of leaf 0 1 1 0 0
Language push down the box contains cruchy biscuit 0 0 0 0 1
Language push down the bag with color of �re 0 0 1 0 0.5
Language push down the object with feather 0.5 0 1 0 1
Spatial pick up the left object and put it in the left bowl 0 1 1 0.25 1
Spatial pick up the middle object and put it in the left bowl 0 0 1 0 1
Spatial pick up the right object and put it in the left bowl 1 0 0.5 0.25 0.5
Spatial pick up the left object and put it in the right bowl 0.25 0.25 1 0.25 1
Spatial pick up the middle object and put it in the right bowl 0 0 1 0 1
Spatial pick up the right object and put it in the right bowl 0.5 0 1 0 1
Spatial press down the left button 0.5 0 0 0 0.5
Spatial press down the middle button 0 0 1 1 0.5
Spatial press down the right button 0 0 1 1 1
Spatial push down the left object 0.5 0 0 0 0
Spatial push down the middle object 1 0.5 0 0 1
Spatial push down the right object 0.5 0 0.5 0.5 1

Novel Object pick up the "R" and put it in the red bowl 0 0 1 0 1
Novel Object pick up the boxed juice and put it in the red bowl 0 0.75 0.75 1 1
Novel Object pick up the cholate bar and put it in the white bowl 0.25 0 0.5 0.5 1
Novel Object pick up the smile face and put it in the red bowl 1 0 1 0 1
Novel Object pick up the mouse and put it in the red bowl 0 0.25 1 0 1
Novel Object pick up the 5 and put it in the white bowl 0 0 0 0 0.25
Multiple pick up the lays chip and put it in the pan 0.25 0.25 0.75 0 1
Multiple pick up the garlic and put it in then pan 0.25 0 1 0 0.25
Multiple pick up the "K" and put it in the pan 0.25 0 0.5 0 1
Multiple pick up the pocky and put it in the pan 0 0.25 0 0.25 0.25

Table C.1: Detailed results of real-world evaluation. The �rst column indicates the variation category,
while the second column presents the language instruction. For the pick and place task, we report the
success rate and the number of successful executions. For the press button and knock down tasks, we
only report the success rate.
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Original Image Hamster w/o Sim Data Hamster RT-Trajectory (CaP) RT-Trajectory (GPT4-o)

Instr: Screw in the 

light bulb on the 

lamp

Instr: Move the 

block on the right 

to Taylor Swift

Instr: Press the 

button with color of 

leaf, then press the 

button with color of 

banana

Figure C.6: HumanVLMevaluation example images and instructions alongwith corresponding trajectories
fromHAMSTERwithout any �netuning on (RLBench) simulation data, HAMSTER �netuned on simulation
data, and GPT-4o.

We evaluate the following VLM models: (1) zero-shot state-of-the-art closed-source models such as

GPT-4o using a similar prompt to ours (shown in Figure C.4), (2) zero-shot state-of-the-art closed-source

models such as GPT-4o but using Code-as-Policies [194] to generate paths as described in Gu et al. [115]

(prompt in Figure C.5), (3) �netuned open-source models (VILA-1.5-13b) on the data sources described in

Section 5.4.1, but excluding the simulation trajectories from the RLBench dataset, (4) �netuned open-source

models (VILA-1.5-13b) on the data sources described in Section 5.4.1, including path sketches from the RL-

Bench dataset. The purpose of these evaluations is to �rst compare with closely relatedwork that generates

2D trajectories using pretrained closed source VLMs [115] (Comparison (1) and (2)). The comparison be-

tween (3) and (4) (our complete method) is meant to isolate the impact of including the simulation path

sketches from the RLBench dataset. In doing so, we analyze the ability of the VLM to predict intermediate

paths to transfer across signi�cantly varying domains (from RLBench to the real world).
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Method VLM Finetuning Rank Rank Rank
Data Exc. Real RLB. Real RLB. All

RT-Traj. 0-shot GPT-4o - 3.40 3.63 3.47
RT-Traj. CaP GPT-4o - 3.57 3.36 3.41
HAMSTER VILA Our Exc. Sim RLB. 1.78 2.39 2.13
HAMSTER VILA Our 1.59 1.28 1.40

Table C.2: Ranking-based human evaluation of di�erent VLMs, averaged across various real-world evaluation tasks. Results
indicate that HAMSTER including simulation data is most e�ective since it captures both spatial and semantic information across
diverse tasks from RLBench. This signi�cantly outperforms zero-shot VLM-based trajectory generation, as described in Gu et al.
[115]

The results suggest that: (1) zero-shot path generation, even from closed-source VLMs [115] such as

GPT-4o with additional help through Code-as-Policies [194], underperforms VLMs �netuned on cross-

domain data as in HAMSTER; (2) inclusion of signi�cantly di�erent training data such as low-�delity

simulation during �netuning improves the real-world performance of the VLM. This highlights the trans-

ferability displayed by HAMSTER across widely varying domains. These results emphasize that the hier-

archical VLA approach described in HAMSTER can e�ectively utilize diverse sources of cheap prior data

for 2D path predictions, despite considerable perceptual di�erences.

C.4.2 VLM Real World Generalization Study

The full list of task descriptions for this study is below (see Appendix C.4.1 for themain experiment details).

Duplicates indicate di�erent images for the same task. We plot some additional comparison examples in

Figure C.6. Note that the path drawing convention in images for this experiment di�er from what is

given to the lower-level policies as described in Section 5.4.2 as this multi-colored line is easier for human

evaluators to see.

1. screw in the light bulb on the lamp

2. screw in the light bulb on the lamp

3. screw in the light bulb on the lamp
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4. screw out the light bulb and place it on the holder

5. screw out the light bulb and place it on the holder

6. screw in the light bulb

7. screw in the light bulb on the lamp

8. move the blue block on Taylor Swift

9. pick up the left block and put it on Jensen Huang

10. move the block on the right to Taylor Swift

11. place the yellow block on Kobe

12. pick up the blue block and place it on Jensen Huang

13. move the red block to Kobe

14. press the button on the wall

15. press the button to open the left door

16. press the button to open the right door

17. open the middle drawer

18. open the bottom drawer

19. open the top drawer

20. open the middle drawer

21. open the bottom drawer

22. press the button
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23. press the button

24. press the orange button

25. press the orange button with black base

26. press the button

27. pick up the SPAM and put it into the drawer

28. pick up the orange juice and put it behind the red box

29. pick up the tomato soup and put it into the drawer

30. pick up the peach and put it into the drawer

31. move the mayo to the drawer

32. move the dessert to the drawer

33. pick up the object on the left and place it on the left

34. pick up the fruit on the left and put it on the plate

35. pick up the milk and put it on the plate

36. press the button with the color of cucumber, then press the button with color of �re

37. press the button with color of banana

38. press the button with color of leaf

39. press the button with color of leaf, then press the one with color of banana

40. press left button

41. pick up the left block on the bottom and stack it on the middle block on top
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42. make I on top of C

43. put number 2 over number 5

44. stack block with lion over block with earth

45. pick up the left block on the bottom and stack it on the middle block on top

46. stack the leftest block on the rightest block

47. stack the block 25 over block L

48. put the left block on �rst stair

C.4.3 Human Ranking

Figure C.7: An example of results for human ranking. The trajectory is from blue to red with blue circle
and red circle denotes gripper close point and open point respectively. The grader is asked to provide a
rank to these trajectory about which trajectory has highest chance to succeed.

Due to the variety of possible trajectories that accomplish the same task, we use human rankings to

compare how likely produced trajectories are to solve the task instead of quantitative metrics such as MSE.

To do that, we generate trajectories for 48 image-question pairs with HAMSTERw/o RLBench, HAMSTER,

Code-as-Policy [194], and GPT4o [3]. See Figure C.7 for an example.

We recruit 5 human evaluators, who are robot learning researchers that have not seen the path outputs

of HAMSTER, to grade these 4 VLMs based on the instruction: “Provide a rank for each method (1 for best

and 4 for worst). In your opinion, which robot trajectory is most likely to succeed. Traj goes from blue to red,
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blue circle means close gripper, red circle means open gripper.” The evaluators are allowed to give multiple

trajectories the same score if they believe those trajectories are tied. As they are robot learning researchers,

they are familiar with the types of trajectories that are more likely to succeed. Therefore, these rankings

act as a meaningful trajectory quality metric.

C.5 Failure Analysis

Figure C.8: Performance Distribution of RVT2+Sketch and 3DDA+Sketch

This section outlines the failure modes observed during our experiments and provides a detailed break-

down of the causes. Failures can be attributed to issues in trajectory prediction, trajectory adherence,

and action execution.

C.5.1 Di�erent Failure Modes

Trajectory Prediction Failures The Vision-Language Model (VLM) may fail to predict the correct tra-

jectory due to several factors:
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- Failure to understand the language goal: Although the VLM demonstrates strong capabilities in han-

dling diverse task descriptions, it struggles when the training set lacks similar tasks. This can cause the

model to misunderstand the goal and make inaccurate predictions.

- Incorrect trajectory prediction: In some cases, the VLM predicts an incorrect trajectory, either by

interacting with the wrong objects or misinterpreting the direction of the a�ordance.

- Dynamic changes in the environment: Since trajectories are generated at the beginning of a task,

signi�cant environmental changes during execution can lead to failure. The model lacks the ability to

dynamically adjust the trajectory or reidentify the object initially referenced.

Trajectory Adherence Failures Failures in adhering to the predicted trajectory arise primarily due to:

- 3D ambiguity: The use of 2D trajectory predictions introduces ambiguities, such as determining

whether a point is positioned above or behind an object, leading to execution errors.

- Incorrect object interaction: The low-level action model is not explicitly constrained to strictly follow

the predicted trajectory. As a result, it may deviate, interacting with the wrong object and causing task

failures.

Action Execution Failures Even when the trajectory is correctly predicted and adhered to, action ex-

ecution may still fail due to:

- Execution-speci�c issues: Despite training on a diverse set of actions, the model may fail during exe-

cution. For example, in grasping tasks, an incorrect grasp angle can cause the object to slip, resulting in a

failed grasp.

C.5.2 Failure Analysis

Our analysis in Figure C.8 reveals distinct failure tendencies across methods.
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For RVT, 72% of failures stemmed from the low-level model failing to follow the trajectory, while 28%

were due to execution failures. In contrast, for 3DDA, only 10% of failures were related to trajectory

adherence, with 90% attributed to execution failures.

We hypothesize that this discrepancy arises because RVT incorporates a re-projection step, complicat-

ing trajectory adherence. In contrast, 3DDA leverages a vision tower that processes the original 2D image,

simplifying trajectory interpretation.

C.6 Simulation Experiment Details

Figure C.9: Colosseum benchmark
variations. Figure from Pumacay et
al. [288], taken with permission.

Our simulation experiments are performed on Colosseum [288], a

simulator built upon RLBench [149] containing a large number of

visual and task variations to test the generalization performance of

robot manipulation policies (see Figure C.9 for a visualization of a

subset of the variations). We use the front_camera and remove

all tasks in which the camera does not provide a clear view of the

objects in the task, resulting in 14 out of 20 colosseum tasks (we

remove basketball_in_hoop, empty_drawer, get_ice_from_-

fridge, move_hanger, open_drawer, turn_oven_on).

Colosseum contains 100 training episodes for each task, without any visual variations, and evaluates

on 25 evaluation episodes for each variation. We follow the same procedure other than using just the

front_camera instead of multiple cameras. We report results in Table 5.3 after removing variations with

no visual variations (e.g., object friction).
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Task RVT2 3DDA OpenVLA HAMSTER+RVT2 HAMSTER+3DDA

pick and place 0.28 0.19 0.46 0.79 0.78
press button 0.13 0.16 0.25 0.50 0.63
knock down 0.17 0.03 0.41 0.47 0.66

Table C.3: Real world average success rates grouped by task type.

C.7 Di�erent ways of representing 2D Paths

To investigate the e�ect of the number of points on the 2D path, we train the VLM to predict 1. paths

simpli�ed using RDP algorithm, which simplify paths in short horizon tasks to 3-5 points and is what we

used in the paper. We denote these paths as RDP in the following; 2. Paths represented with 20 points

sampled on the path with same step size, denoted as 20p in the following. We keep points where the

gripper is executing operation of open or close in both methods.

We train the network on RLBench 80 tasks with 1000 episodes for each task and test it on 25 episodes

on the task of close jar. We tried both VILA1.5-3B (denoted as 3B) and VILA1.5-13B (denoted as 13B) as our

backbone. Thus we have in total 4 combinations over 2 backbones and 2 designs of path representations.

We visualize the result in this Figure C.10.

From this result we can see that when using smaller models, like VILA1.5-3B, paths represented using

points extracted using RDP algorithm outperforms paths represented with a �xed number of 20 points

signi�cantly. When the network becomes larger to the level of 13B, the VLM is able to handle the repre-

sentation using 20 points and both two path representations work perfectly. We believe that is because

when points are simpli�ed using the RDP algorithm, we usually need less points to represent the path and

helps the model to pay more attention to predict the accurate position for the gripper open/close points.
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Figure C.10: The task is to pick up the lid and close it on the jar with correct color. Task description
is located on the top-left corner of each image. The trajectory goes from blue to red where blue circles
denotes where the gripper should close and red circles denotes where the gripper should open. GT de-
notes ground truth, 3B and 13B denotes VILA1.5-3B and VILA1.5-13B, RDP denotes paths simpli�ed using
Ramer–Douglas–Peucker algorithm while 20p denotes paths reprensented using 20 points.
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Appendix D

TAIL

Appendix: TAIL: Task-speci�c adapters for imitation learning with large

pretrained models

D.1 Model Architecture Details

D.1.1 Pretrained Input Encoders

We utilize pretrained CLIP image and textual encoders [289] to encode image observations and language

goal descriptions, respectively. Note that we do not use a pre-trained encoder for the low-dimensional

state; the state encoder is learned from scratch.

D.1.2 Input Modality Fusion

We utilize Feature-wise Linear Modulation (FiLM) layers [280] (Fig. 6.1(a), input fusion module) to fuse

language task speci�cations with image observations. FiLM is a technique in multi-modal deep learning

which modulates the intermediate activations of a neural network based on external information. Rather

than explicitly designing architectures for conditional computation, FiLM layers simply use the features

from one network to modulate the features of another.
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Figure D.1: A detailed view of the multi-modal, transformer policy architecture we utilize for pretraining.
We encode language task descriptions with a pretrained CLIP instruction encoder and image observations
with a pretrained CLIP spatial encoder. We additionally encode robot state observations which, along
with the observation embeddings, are embedded into a sequence of tokens used by the temporal decoder
transformer to predict single-step action distributions. We include an input fusion module (FiLM [280]) to
explicitly combine the task embedding with the observation and state embeddings for better instruction-
following ability.

Let’s consider a neural network f with intermediate activations x and an external network g which

outputs modulation parameters γ and β. The modulated features x′ are given by:

γ, β = g(z) (D.1)

x′ = γ ⊙ x+ β, (D.2)

where z is the input to the external network g; ⊙ represents element-wise multiplication; γ and β are

vectors having the same size as x, with each element modulating a corresponding feature in x.
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Thus, FiLM layers allow for a dynamic and feature-wise conditional computation without needing

explicit architectural changes. As such, task token (language) embeddings are given as input to a fully

connected feedforward network, which outputs scale and translation parameters for the image and state

embeddings. These parameters modulate the image and state embeddings before they are passed to the

transformer backbone.

D.1.3 Temporal Transformer Backbone

We utilize a standard GPT-2 [290] transformer backbone for our policy. Its input is a sequence of image

and low-dim state encodings (robot joint states in LIBERO) and it outputs an action distribution. Following

the literature [234, 201], we adopt a stochastic policy parametrization based on a Gaussian-Mixture-Model

(GMM) [28]. Therefore, for every decision-making step, the transformer produces a latent vector of Gaus-

sian means and variances, one for each of the GMM modes. We optimize the parameters of the model

with the negative log-likelihood loss on the ground truth actions based on the parameters of the GMM

distribution. At evaluation time, we deterministically select the next action parameterized by the mean of

the Gaussian model with the highest density.

The environment con�guration and the temporal decoder (GPT-2) hyperparameters are presented in

Table D.1.

Table D.1: Environment con�guration and GPT-2 model hyperparameters

Environment Con�guration GPT2 Temporal Encoder Con�guration

Action Dim. 7 Max Seq Length 8 Activation Gelu New
Raw State Dim. 9 Number of Heads 8 Number of Layers 6

Max Episode Length 500 GMM Min Std 0.0001 GMM Modes 5
Image Resolution 128 x 128 FiLM Layers 2 Dropout 0.15
Image Views Agent Front, Eye-in-Hand
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D.2 Implementation and Training Details

D.2.1 Baseline Details

Experience Replay (ER). ER [48, 301] is a rehearsal-based approach that retains a bu�er of samples from

previous tasks to facilitate the learning of new tasks. After completing the learning process for a task, a

subset of the data is saved into this bu�er. During the training of subsequent tasks, ER draws samples

from this bu�er and mixes them with current task data. This process ensures that the training data closely

resembles the distribution of data across all tasks. In our setup, we store all the previous trajectories in a

replay bu�er. For each training iteration on a new task, we uniformly sample 50% trajectories from this

bu�er and 50% from the new task’s training data, respectively.

Elastic Weight Consolidation (EWC). EWC [169] is a regularization method that adds a term to the

standard single-task learning objective to constrain the updates of the neural network. This constraint

uses the Fisher information matrix to gauge the signi�cance of each network parameter. The loss function

for task k is represented as:

LEWCk(θ) = LBCK (θ) +
∑

i

λ

2
Fi(θi − θ∗k−1,i)

2

Here, λ is a hyperparameter penalty, and Fi is the diagonal of the Fisher information matrix given by:

Fk = Es∼Dk,a∼pθ(·|s) (∇θk log pθk(a|s))
2

For our experiments, we adopt the online version of EWC. It updates the Fisher information matrix using

an exponential moving average throughout the lifelong learning process. The actual Fisher Information

Matrix estimate used is:

F̃k = γFk−1 + (1− γ)Fk

267



with Fk = E(s,a)∼Dk (∇θk log pθk(a|s))
2 and k representing the task number. Following the benchmark

implementation [201], the hyperparameters are set as γ = 0.9 and λ = 5× 104.

Discussions. Both Experience Replay (ER) and Elastic Weight Consolidation (EWC) demonstrate poten-

tial in mitigating catastrophic forgetting. However, they each come with notable limitations, particularly

with respect to forward transfer performance, storage, and computational e�ciency.

Storage Overhead: ER demands signi�cant storage space to maintain samples from prior tasks. This

becomes particularly evident when comparing the storage needs of ER for larger datasets, such as the

Kitchen dataset which requires 28GB, with the lightweight LoRA adapter occupies only 7.8MB. The vast

di�erence in storage demands underscores the ine�ciency of the ER approach.

Computational Challenges: EWC, by design, necessitates the maintenance of a copy of the weights of

the previous model in GPU memory. This leads to escalated GPU memory consumption, making EWC

tends to reduce the training batch size, subsequently slowing down the training process.

Training Instability: The regularization approach of EWC can introduce instability during training,

owing to the regularization loss. This is also re�ected by the poor forward transfer capability, as shown in

Table 6.1.

Scalability Concerns: While EWC might be manageable for smaller networks, it is ill-suited for the

�ne-tuning of larger decision models due to its computational and storage challenges.

Given these outlined limitations, we advocate TAIL for alternative approaches that are both storage-

e�cient and computationally scalable, especially for large pretrained model adaptation.

D.2.2 TAIL Adapter Con�gurations

To establish our TAIL adapter con�gurations, we primarily draw from the AdapterHub implementation,

setup and hyperparameters [285].
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We utilize the default hyperparameters for LoRA, with the rank r = 8 and scaling factor α = 8.

These low-rank matrices are applied in parallel to the Transformer’s query and value matrices [141]. We

also adopt the default for pre�x token length of 30 for the pre�x tuning [190] method across all tasks. To

improve the training stability, Low-rank matrices (r = 16) are employed during training to represent the

pre�x tokens. The Bottleneck Adapter [140] employs the bottleneck size of 32, and is applied to both the

output layer of the attention and the intermediate feedforward layers. The RoboAdapter method [322],

as the closest work to us, also applies the sequential adapters to the decision-making domain. It di�ers

from the Bottleneck Adapter in that they adopt a special insertion of weights to speci�c layers of the

Transformer, namely, layers 0, 1, 5, 6, 10, 11. They selectively skip certain layers, aiming to increase the

bottleneck size on the remaining layers. Therefore, the bottleneck size is doubled to 64 for this approach,

such that all methods share similar amount of parameters.

In order to maintain balanced adapter parameters number between the two CLIP-based (spatial and

instruction) encoders, and the temporal transformer GPT2 decoder, the rank size for the GPT2 decoder

is doubled across all methodologies. This adjustment compensates for the GPT2 decoder’s fewer layers

relative to the encoders.

For the continual learning setup, we use the previous stage’s adapterweight (if any) plus a small random

Gaussian noise with standard deviation 0.001 as an initialization of the current stage. The goal for adding

a minor random noise aims to improve the adapter weight capacity [173, 5, 215], preventing the weights

from being trapped into local optimum. There is a potential to better utilize the trained adapter weights

on preceding tasks. We outline several promising exploration directions in Appendix Section D.2.4.
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D.2.3 Training Hyperparameters and Experiment Con�gurations

Following similar setup as in the LIBERO benchmark [201], we perform data augmentation for the image

observation data for all methods. We adopt the color, a�ne, and random erase augmentations to improve

the robustness. The hyperparameters are presented in Table D.2.

Table D.2: Image data augmentation and training hyperparameters

Image Augmentation Training and Optimizer Con�guration

Brightness 0.3 Contrast 0.3 Training Epochs 100/50 Batch Size (per device) 10/14/18
Saturation 0.3 Hue 0.3 Training Epochs per Eval 5 Eval Episodes/Task 8

Color Aug Prob. 0.9 A�ne Degrees 15 Warm-up Steps 500 Weight Decay 0.1
A�ne Translate 0.1 A�ne Prob. 0.6 Learning Rate (LR) 1e-4 LR Scheduler Linear

Random Erase Prob. 0.1 Training Demo Num 40 Validation Demo Num 40

For our training process, we employed the AdamW optimizer combined with a linear learning rate

scheduler. Themajority of our task suites—Kitchen, Spatial, Goal, Object, Living Room, and Study Room—underwent

training for 100 epochs. Notably, each suite encompasses multiple tasks, with Kitchen having 40 and the

others containing 8 each. In contrast, the 10 long-horizon adaptation tasks, termed LIBERO-10, were

trained for 50 epochs, with each task trained sequentially. We performed evaluations after every 5 train-

ing epochs over 8 episodes (unseen in training) for each task.

Computingmachine. Our experimental platform was powered by an AMD EPYC 7R32 CPU running

Ubuntu 20.04.06. All trainings utilized 8 NVIDIA A10GGPUs, each with a memory of 22731MiB, equipped

with driver version 470.199.02 and CUDA version 11.4. We employ Distributed Data Parallel (DDP) for

parallel training across 8 GPUs, and utilize the 16-bit �oating point precision (FP16) training mode to

accelerate the training process. To ensure reproducibility, we adopted 3 distinct random seeds: 0, 21, and

42.

Training time. For a holistic perspective on training duration: FFT and ER methods demanded be-

tween 120 ∼ 140 hours per experiment (1.5 ∼ 1.75 hours per task) for the 6 task suites shown in Fig.

6.5, including the evaluation time. In stark contrast, TAIL-based techniques slashed this to 60 ∼ 66 hours
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(0.75 ∼ 0.825 hours per task). Hence, TAIL would also be much cheaper to train, considering its signi�-

cantly shorter training time under identical computing machines.

Batch sizes varied by training method. EWC employed a batch size of 10, given its added memory

demands to store a distinct full parameter set. FFT and ER utilized batch sizes of 14. Owing to TAIL’s

more e�cient memory utilization—detailed in Table 6.3—a larger batch size of 18 was feasible, which can

maximize GPU resource usage on our machine, reducing training duration and cost.

D.2.4 More Discussion and Future Directions

The TAIL framework paves the way for a myriad of research opportunities:

1. Better Weight Allocation Method Across Layers: An interesting question within this framework

is discerning which layers, early or later, derive the most bene�t from weight modi�cations. This can

o�er insights into the adaptability of neural architectures [182].

2. Enhanced Reusability of Trained Adapters: Exploring methods to e�ciently reuse adapters from

prior tasks, especially in scenarios with limited data, is a promising direction. AdapterFusion techniques

[284] can be potentially useful, enabling the composition of knowledge from multiple pre-existing

adapters.

3. Building on Knowledge with Parallel Integration: The parallel integration method, particularly

with LoRA weights, o�ers the capability to merge trained weights back into the main model. This iter-

ative buildup of knowledge makes the approach valuable for continual learning, allowing new adapters

to capitalize on the expertise of their predecessors.
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4. Combining with Established Continual Learning Strategies: The potential to merge the TAIL

framework with existing continual learning methods, like Experience Replay and EWC, can be a ben-

e�cial avenue. Such integrations can accommodate the strengths of each method, crafting models that

are both e�cient in memory and robust against forgetting.

5. Extension beyond the ImitationLearningDomain: Taking the TAILframework into other decision-

making domains, such as reinforcement learning (RL), is also promising. TAIL has the potential to

address the model capacity loss issue in RL [5, 215]. Leveraging the TAIL framework can also aid

in multitask learning, meta-learning, and e�ciently adapting o�ine-trained RL models to new tasks

without the necessity of vast amounts of data or extensive �ne-tuning, thereby potentially accelerating

convergence to optimal policies.

The avenues above elucidate the adaptability and potential of the TAIL framework, setting the stage

for future research in this domain.
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D.3 More Experiment Results

D.3.1 Over�tting

For each task, we used 40 demonstrations for training and 10 for validation. We are interested in the

following question: In scenarios where data is limited, how resilient is TAIL against over�tting compared

to traditional �ne-tuning methods? To answer this, we present the training and validation loss cross the

Kitchen, Spatial, Goal, Object, Living Room and Study Room task suites, each with 100 epochs, in Fig. D.2.
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TAIL (LoRA) TAIL (Bottleneck Adapter) TAIL (Prefix Tuning) FFT

Figure D.2: Adaptation loss trends: Training versus validation. The graph shows that the TAIL model
consistently has more stable validation losses, which means that it is more robust to contexts with limited
data. On the other hand, the full �ne-tuning model (FFT) has larger validation losses, which means that it
is more likely to over�t to the training data.

A noteworthy observation from Fig. D.2 is the behavior of FFT. Despite achieving the lowest training

loss across all stages, its validation loss spikes signi�cantly after just a few epochs. This pattern suggests

severe over�tting when FFT is applied to the entire parameter space using limited data. Intriguingly,

this over�tting intensi�es in the later adaptation phases, potentially signifying a distortion of pretrained

features as alluded to by Kumar et al. [173]. Such distortion could be a contributor to the suboptimal

success rate observed in Fig. 6.5, and the loss of learning capacity when revisiting a previous task, as

presented in Table 6.2.
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In constrast, TAIL-based methods shows strong resilience against over�tting. Drawing from the Oc-

cam’s razor principle, TAIL leverages fewer trainable parameters, inherently reducing its potential to over-

�t with scarce data. Additional, di�erent integration styles provide the �exibility to e�ectively utilize the

features from pretrained models while preserving them across all the adaptation stages.
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Figure D.3: Training on the Kitchen task
with di�erent pretrained CLIP-ViT en-
coder weight. Random means using ran-
dom initialization weight.

This observation underscores the disparities between our

decision-making problem, characterized by its limited data,

and the traditional language or vision domains, which have

data in abundance. Prior studies utilizing parameter-e�cient

�ne-tuning techniques for language or vision tasks often re-

ported superior performance with full �ne-tuning due to its

low training loss [132, 235, 55, 322]. However, as our results

demonstrate, a lower training loss does not invariably trans-

late to superior performance, especially in the context of a data-scarce sequential decision-making tasks.

D.3.2 Analysis of pretrained weights’ in�uence

We aim to answer the following question: how does the underlying pretrained base model in�uence the

performance of TAIL, and are certain pretrained weights more conducive to this kind of adaptation? We

initiated our investigation by analyzing the success rates of 40 Kitchen tasks using di�erent pretrained

weights for the spatial encoder. Apart from the CLIP-ViT pretrained encodings as we adopted in our main

results, two other initialization of weights were considered: one sourced from the Visual Cortex 1 (VC-

1) [227], recognized for being a leading pretrained model for embodied agent tasks, and another using

randomly initialized weights. The language instruction encoder consistently utilized the CLIP text model.

From the results in Fig. D.3, the VC-1 pretrained weights delivered performance on par with the CLIP-ViT

encodings. Both considerably outperformed the randomly initialized weights, suggesting that large-scale
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pretraining can indeed enhance downstream �ne-tuning. We then study how does the pretrained base

model in�uence the performance of TAIL.

D.3.3 Further Evaluations on TAIL with Di�erent Base Models

To understand the in�uence of the base model’s features on the performance of TAIL, we conducted addi-

tional evaluations. In Table D.3, the methods column showcases di�erent con�gurations:

• LoRA (CLIP): The main setup we adopted in the experiment section 6.5, which keeps the pretrained

CLIP encodings frozen across all the adaptation stages.

• LoRA (CLIP with FFT): Starting with the CLIP model, we applied FFT pretraining on the Kitchen

task before using LoRA for subsequent adaptations. This helps us test out whether adaptation plas-

ticity su�ers after full �ne-tuning as the only di�erence between this and the above method is the

addition of full �ne-tuning before using LoRA.

• LoRA (VC-1 with FFT): The VC-1 model, after FFT pretraining on the Kitchen task, was adapted

using LoRA.

• LoRA (Randomwith FFT):Amodel with randomly initialized weights underwent FFT pretraining

on the Kitchen task, followed by adaptation with LoRA.

All the pretrained encodings implemented in the same model architecture as described in Appendix

Section D.1.

Observations from Table D.3 highlight several �ndings:

• Dominance of Original CLIP: The pure CLIP base model, when combined with LoRA, yielded the

highest success rates across all task suites, suggesting the inherent quality and robustness of the

original CLIP features for these tasks.
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• FFT’s Mixed Impact: While FFT pretraining aids in task-speci�c �ne-tuning, when combined with

CLIP, it leads to a degradation in performance. This could be attributed to FFT potentially diluting

the comprehensive and rich features within CLIP while also reducing adaptation plasticity [173],

especially when exposed to a more constrained domain with limited data.

• VC-1’s Comparable Performance: The VC-1 model, though renowned in the domain of embodied

agent tasks, delivered results that were only marginally better than the randomly initialized weights

when both were subjected to FFT pretraining and then adapted with LoRA. This emphasizes the

unique advantages of the original CLIP features.

Interestingly, it is observed that CLIP is pretrained on the most comprehensive dataset, followed by

VC-1. In contrast, the model with random weights only underwent pretraining on the 40 Kitchen tasks.

The success rates mirror this order, underscoring the idea that the e�cacy of TAIL is closely tied to a base

model pretrained with rich features on extensive datasets. So in summary, the choice of base model signif-

icantly a�ects the performance of TAIL, with CLIP’s original features showing remarkable compatibility

and resilience across various task suites

Table D.3: Evaluation results of FWT for LoRA with di�erent pretrained model weights. The higher, the better. We
highlight the best method with highest FWT as bold.

Method Spatial Goal Object Living Room Study Room Average
LoRA (CLIP) 0.76 ± 0.02 0.79 ± 0.02 0.73 ± 0.14 0.73 ± 0.07 0.55 ± 0.11 0.71 ± 0.07

LoRA (CLIP with FFT) 0.62 ± 0.04 0.67 ± 0.13 0.38 ± 0.08 0.32 ± 0.08 0.32 ± 0.01 0.46 ± 0.07

LoRA (Random with FFT) 0.38 ± 0.19 0.60 ± 0.06 0.37 ± 0.03 0.23 ± 0.01 0.47 ± nan 0.41 ± 0.07

LoRA (VC-1 with FFT) 0.56 ± 0.07 0.66 ± 0.08 0.25 ± 0.00 0.20 ± 0.06 0.48 ± 0.07 0.43 ± 0.05

D.3.4 Rank Size Ablation Study

In order to understand the impact of rank-size on adaptation performance, we conducted experiments us-

ing varying rank sizes for the LoRA and Bottleneck Adapter methods. The results, illustrated in Fig. D.4,
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present the average success rates across the Spatial, Goal, and Object task suites. It is evident that increas-

ing the rank size generally enhances performance up to a certain point. Beyond this optimal threshold,

further increasing the rank size does not necessarily lead to higher success rates, potentially because of

over�tting. Notably, in our continual learning context, the parallel insertion approach of LoRA consistently

surpasses the sequential style of the Bottleneck Adapter method.
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Figure D.4: Ablation study of the rank-size of
LoRA and Bottleneck adapters. Increasing the rank
size generally enhances performance up to a cer-
tain point. Beyond this optimal threshold, further
increasing the rank size does not necessarily lead to
higher success rates. The parallel insertion approach
of LoRA consistently surpasses the sequential style
of the Bottleneck Adapter method
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Figure D.5: Comparison for TAIL-LoRA, sequential FFT
with pre-trained CLIP weights, and FFT-In-Domain. FFT-
In-Domain is trained from scratch with task-suite demon-
stration data only, which saves a copy of the entire model
for each task. FFT with CLIP excels in initial Kitchen and
Spatial suites, highlighting the value of pretrained mod-
els; however, its performance declines in subsequent tasks,
suggesting reduced adaptability. In contrast, TAIL-LoRA
demonstrates consistent superior performance across all
suites.

Additionally, we would like to note that our TAIL framework exhibits data adaptivity, suggesting that

the rank size could be adjusted based on the quantity of adaptation data. In scenarios with smaller datasets,

a smaller rank size could be more e�ective, and vice versa.

D.3.5 Comparison between Training from Scratch and Using Pretrained Models

Fig. D.5 compares the success rates across task suites for TAIL-LoRA, sequential FFT with pre-trained

CLIP weights, and FFT-In-Domain. Unlike FFT-CLIP, FFT-In-Domain is trained from scratch with task-

suite demonstration data only, i.e., we need to maintain a copy of the entire model for each task suite.

There are three observations:
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1. Pretrained Weights Advantage: In the initial Kitchen and Spatial task suites, FFT with CLIP pre-

trained weights demonstrates a higher success rate compared to FFT trained from scratch. This indicates

the e�ectiveness of leveraging pretrained models, particularly in the context of the Kitchen suite where

the bene�t is more pronounced.

2. Decline in Model Adaptability: Despite the initial advantage, sequential FFT with CLIP shows a

marked decline in performance in the remaining four task suites - Goal, Object, Living, and Study. This

trend may be indicative of a loss in model plasticity, where the pre-trained model performs well in the

early stages but struggles to adapt to new tasks after the pre-trained weights are contaminated.

3. TAIL-LoRA’s Consistent Performance: Throughout all the task suites, TAIL-LoRA with pre-

trained CLIP consistently outperforms the other methods. This suggests that the LoRA approach, com-

bined with the advantages of pretrained CLIP weights, provides a robust and adaptable framework capable

of handling a variety of tasks with greater e�ciency.

D.3.6 Ablation study for di�erent integration style combinations

It’s noteworthy that our method allows for the simultaneous use of multiple integration techniques [235].

This �exibility lets us explore the performance impact of combining LoRA (parallel integration), bottleneck

adapter (sequential integration), and pre�x token (concatenation). To this end, we conduct an ablation

study for each of the combinations over the Spatial, Goal, and Object task suites. The experiment result is

shown in Fig. D.6, where the y-axis is the averaged success rate.

A key �nding is the critical role of LoRA (parallel integration) in enhancing adaptation performance.

Combinations involving LoRA consistently outperform those without it. For instance, the standalone use

of LoRA yields a comparable success rate w.r.t the combination with others. This pattern underscores

LoRA’s e�ectiveness, either used alone or in conjunction with other methods. In contrast, the combination
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of Pre�x and Adapter without LoRA results in a notably lower success rate (0.6641), highlighting LoRA’s

indispensability.
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Figure D.6: Ablation study for integration style combinations. LoRA
(parallel integration) plays a crucial role in enhancing adaptation per-
formance, consistently outperforming methods without it. Whether
used alone or in combination with other methods like Pre�x and
Adapter, LoRA shows superior e�ectiveness.

The integration of all three meth-

ods—Pre�x, Adapter, and LoRA—achieves

a success rate that is comparable to

LoRA’s standalone performance. This

outcome suggests that while the com-

bination of di�erent integration meth-

ods does not detract from performance,

LoRA remains the primary driver of

successful adaptation. These �ndings

emphasize the importance of LoRA in

adapter weight integration strategies

and provide valuable guidance for future

approaches in this domain.

D.3.7 Detailed per-task results in the LIBERO-Long task suite

D.4 Evaluation Task Details

We list all the language instructions describing the tasks we adopted in our experiments below. Note

that while certain tasks may share similar descriptions, they are not the same due to variations in the

environment con�gurations (e.g., di�erent spatial layouts, objects, or goal positions).
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Table D.4: Adaptation results on 10 long horizon tasks. The ↑ symbol means the higher, the better. The BWT ↑ for
TAIL methods are all 0 (no catastrophic forgetting). We highlight the best method (highest FWT ↑) in bold. FPF
results were omitted due to its near-zero performance.

Task
Conventional Fine-Tuning Methods TAIL-based Methods (Ours)

Full Fine-Tuning Experience Replay EWC LoRA Pre�x Bottleneck RoboAdapter
FWT ↑ BWT ↑ FWT ↑ BWT ↑ FWT ↑ BWT ↑ FWT ↑ FWT ↑ FWT ↑ FWT ↑

Task 1 0.42 ± 0.07 - 0.25 ± 0.12 - 0.38 ± 0.12 - 0.62 ± 0.00 0.38 ± 0.12 0.21 ± 0.14 0.12 ± 0.00

Task 2 0.58 ± 0.07 -0.42 ± 0.06 0.58 ± 0.07 -0.25 ± 0.10 0.54 ± 0.07 -0.38 ± 0.10 0.75 ± 0.00 0.58 ± 0.19 0.75 ± 0.12 0.50 ± 0.12

Task 3 0.71 ± 0.07 -0.50 ± 0.10 0.67 ± 0.07 -0.42 ± 0.19 0.38 ± 0.12 -0.46 ± 0.12 0.96 ± 0.07 0.88 ± 0.22 0.71 ± 0.19 0.50 ± 0.25

Task 4 0.96 ± 0.07 -0.57 ± 0.13 0.92 ± 0.07 -0.50 ± 0.20 0.75 ± 0.25 -0.43 ± 0.12 0.88 ± 0.00 0.71 ± 0.07 0.71 ± 0.19 0.58 ± 0.14

Task 5 0.21 ± 0.07 -0.67 ± 0.21 0.33 ± 0.14 -0.60 ± 0.25 0.17 ± 0.19 -0.50 ± 0.18 0.62 ± 0.12 0.17 ± 0.07 0.25 ± 0.00 0.29 ± 0.07

Task 6 0.83 ± 0.19 -0.57 ± 0.26 0.71 ± 0.19 -0.55 ± 0.25 0.50 ± 0.43 -0.42 ± 0.19 0.75 ± 0.12 0.79 ± 0.14 0.75 ± 0.00 0.75 ± 0.25

Task 7 0.17 ± 0.07 -0.62 ± 0.27 0.12 ± 0.00 -0.58 ± 0.25 0.04 ± 0.07 -0.44 ± 0.24 0.54 ± 0.26 0.38 ± 0.12 0.31 ± 0.09 0.33 ± 0.07

Task 8 0.42 ± 0.07 -0.55 ± 0.29 0.29 ± 0.07 -0.51 ± 0.28 0.12 ± 0.18 -0.46 ± 0.28 0.75 ± 0.25 0.67 ± 0.19 0.25 ± 0.18 0.50 ± 0.22

Task 9 0.17 ± 0.07 -0.54 ± 0.28 0.12 ± 0.05 -0.50 ± 0.28 0.00 ± 0.00 -0.41 ± 0.29 0.38 ± 0.12 0.08 ± 0.07 0.19 ± 0.09 0.21 ± 0.07

Task 10 0.33 ± 0.19 -0.50 ± 0.29 0.50 ± 0.02 -0.46 ± 0.29 0.12 ± 0.18 -0.38 ± 0.31 0.79 ± 0.07 0.50 ± 0.33 0.44 ± 0.09 0.42 ± 0.07

Average 0.48 ± 0.10 -0.55 ± 0.21 0.45 ± 0.09 -0.49 ± 0.23 0.30 ± 0.16 -0.43 ± 0.20 0.70 ± 0.10 0.51 ± 0.15 0.46 ± 0.11 0.42 ± 0.13
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Task Suite Instructions

close the top drawer of the cabinet
close the top drawer of the cabinet and put the black bowl on top of it

Kitchen put the black bowl in the top drawer of the cabinet
put the butter at the back in the top drawer of the cabinet and close it
put the butter at the front in the top drawer of the cabinet and close it
put the chocolate pudding in the top drawer of the cabinet and close it
open the bottom drawer of the cabinet
open the top drawer of the cabinet
open the top drawer of the cabinet and put the bowl in it
put the black bowl on the plate
put the black bowl on top of the cabinet
open the top drawer of the cabinet
put the black bowl at the back on the plate
put the black bowl at the front on the plate
put the middle black bowl on the plate
put the middle black bowl on top of the cabinet
stack the black bowl at the front on the black bowl in the middle
stack the middle black bowl on the back black bowl
put the frying pan on the stove
put the moka pot on the stove
turn on the stove
turn on the stove and put the frying pan on it
close the bottom drawer of the cabinet
close the bottom drawer of the cabinet and open the top drawer
put the black bowl in the bottom drawer of the cabinet
put the black bowl on top of the cabinet
put the wine bottle in the bottom drawer of the cabinet
put the wine bottle on the wine rack
close the top drawer of the cabinet
put the black bowl in the top drawer of the cabinet
put the black bowl on the plate
put the black bowl on top of the cabinet
put the ketchup in the top drawer of the cabinet
close the microwave
put the yellow and white mug to the front of the white mug
open the microwave
put the white bowl on the plate
put the white bowl to the right of the plate
put the right moka pot on the stove
turn o� the stove

Table D.5: 40 Kitchen scene pretraining tasks
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Task Suite Instructions

put both the alphabet soup and the tomato sauce in the basket
Long-horizon put both the cream cheese box and the butter in the basket
(LIBERO 10) turn on the stove and put the moka pot on it

put the black bowl in the bottom drawer of the cabinet and close it
put the white mug on the left plate and put the yellow and white mug on the right plate
pick up the book and place it in the back compartment of the caddy
put the white mug on the plate and put the chocolate pudding to the right of the plate
put both the alphabet soup and the cream cheese box in the basket
put both moka pots on the stove
put the yellow and white mug in the microwave and close it
pick up the black bowl between the plate and the ramekin and place it on the plate

Spatial pick up the black bowl next to the ramekin and place it on the plate
pick up the black bowl from table center and place it on the plate
pick up the black bowl on the cookie box and place it on the plate
pick up the black bowl in the top drawer of the wooden cabinet and place it on the
plate
pick up the black bowl on the ramekin and place it on the plate
pick up the black bowl next to the cookie box and place it on the plate
pick up the black bowl on the stove and place it on the plate
open the middle drawer of the cabinet

Goal put the bowl on the stove
put the wine bottle on top of the cabinet
open the top drawer and put the bowl inside
put the bowl on top of the cabinet
push the plate to the front of the stove
put the cream cheese in the bowl
turn on the stove
pick up the alphabet soup and place it in the basket

Object pick up the cream cheese and place it in the basket
pick up the salad dressing and place it in the basket
pick up the bbq sauce and place it in the basket
pick up the ketchup and place it in the basket
pick up the tomato sauce and place it in the basket
pick up the butter and place it in the basket
pick up the milk and place it in the basket
pick up the alphabet soup and put it in the basket

Living Room pick up the butter and put it in the basket
pick up the milk and put it in the basket
pick up the orange juice and put it in the basket
pick up the tomato sauce and put it in the basket
pick up the alphabet soup and put it in the tray
pick up the butter and put it in the tray
pick up the cream cheese and put it in the tray
pick up the book and place it in the right compartment of the caddy

Study Room pick up the book and place it in the front compartment of the caddy
pick up the book and place it in the left compartment of the caddy
pick up the book and place it in the right compartment of the caddy
pick up the red mug and place it to the right of the caddy
pick up the white mug and place it to the right of the caddy
pick up the book in the middle and place it on the cabinet shelf
pick up the book on the left and place it on top of the shelf

Table D.6: Adaptation task suites
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Appendix E

HAND

E.1 Environment Details and Hyperparameters

Train: Env A Train: Env B

Test: Env DTrain: Env C

(a) CALVIN [237] (b) Real-World WidowX-250

Figure E.1: We retrieve data from a prior dataset to train on new scenes in CALVIN. On our real-world
WidowX-250 robot, we demonstrate real-world learning from HAND-retrieved trajectories along with
real-time adaptation to long-horizon tasks.

E.1.1 CALVIN.

The CALVIN benchmark is built on top of the PyBullet [68] simulator and involves a 7-DOF Franka Emika

Panda Robot arm that manipulates the scene. CALVIN consists of 34 tasks and 4 di�erent environments

(ABCD). All environments are equipped with a desk, a sliding door, a drawer, a button that turns on/o�

an LED, a switch that controls a lightbulb and three di�erent colored blocks (red, blue and pink). These

environments di�er from each other in the texture of the desk and positions of the objects. CALVIN

provides 24 hours of tele-operated unstructured play data, 35% of which are annotated with language
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descriptions. We utilize this 35% as a natural way to obtain a smaller subset of the data as the full dataset is

very large, but we do not use the task-oriented language instructions. In total,Dplay corresponds to∼ 17k

trajectories for our experiments.

We evaluate on the following tasks:

• Close Drawer. For this task, the arm is required to push an opened drawer and close it. The drawer’s

degree of openness is randomized.

• Move Slider Left. This task requires the robot arm to move a slider located on the desk from the right

to the left. The slider position is randomized.

• Turn On Led. In this task, the robot arm needs to navigate its way to a button and press down on it

such that an LED turns on.

• Lift Blue Block Table. For this task, the robot arm needs to pick up a blue block from the table. The

location of the blue block on the table is randomized.
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E.1.2 Real Robot Experimental Setup

Figure E.2: We evaluateHANDon 5 di�erent real robot tasks. The last two are long-horizon tasks, requiring
more than 100 timesteps of execution.

Hardware Setup. We evaluate HAND on a real-world multi-task kitchen environment using the

WidowX robot arm. The WidowX is a 7-DoF robot arm with a two-�ngered parallel jaw gripper. Our

robot environment setup is shown in Figure E.1. We use an Intel Realsense D435 RGBD camera as a static

external camera and a Logitech webcam as an over-the-shoulder camera view. We use a Meta Quest 2 VR

headset for teleoperating the robot.

Task-agnostic play dataset. Our play dataset contains a total of 50k transitions collected at 5hz. To

encourage diverse behaviors and motions, human teleoperators were instructed to freely interact with the

available objects in the scene without being bound to speci�c task goals.

Evaluation protocol. The agent is allocated a 100 timestep budget to complete each task. Further-

more, we introduce distractor objects in the scene that are not part of the task so that the policy does not

just memorize the expert demonstrations. Moreover, movable task object positions are randomized in a

�xed region if applicable. We evaluate on four manipulation tasks described below:

• Reach Block. In this task, the robot arm must reach and hover directly above a green block placed

on the table. Success is achieved when the gripper remains positioned clearly above the block. Partial

success is awarded if the gripper end-e�ector touches the block without hovering steadily above it.

• Push Button. This task requires the robot arm to press the right-side button on a stovetop. Success is

achieved upon pressing the button. Partial success is awarded if the robot arm approaches su�ciently

close to the button without making contact.
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• Close Microwave. This task requires the robot to close a microwave door from various starting angles.

Partial successe is awarded if the robot pushes the door without completely closing it. A successful

closure is con�rmed by an audible click sound.

• Put K-Cup in Co�ee Machine.∗ In this task, the robot needs to �rst pick up the Keurig cup and then

transport it to the co�ee machine and insert the cup into the cup holder. This task requires precision

low-level control as the Keurig cup is small, making it di�cult to grasp reliably. Additionally, the cup

holder on the co�ee machine is just large enough to �t the Keurig cup, leaving small margin of error

during the insertion. The co�ee machine is �xed to the kitchen stovetop, while the initial location of the

Keurig cup is randomized. Given the di�culty of the task, we provide partial success for successfully

grasping the Keurig cup.

• Blend Carrot. The robot �rst picks up a toy carrot and then drops it into the blender. Once the carrot is

inside the blender, it will press a button at the blender base to activate the blender and hold the button for

2 seconds. The location of the blender is static, but the carrot is randomized. Partial success is provided

for picking up the carrot and also successfully dropping it into the blender.

Vision 
Encoder

Modality Embedder

queries

External 

Embedder

Embedder

Over Shoulder 

key, value

key, value

Transformer Decoder

Learnable Action Embeddings

Predicted Action Sequence

Cross Attention 
Layer

Figure E.3: (Left) Learnable image embeddings following [365]. (Right) The learned image embeddings for
each modality are concatenated and provided to a transformer decoder similar to [410]. We also perform
action chunking with a chunk size of 5 timesteps for 1 second of execution.

∗https://www.samsclub.com/p/members-mark-gourmet-kitchen-appliances-playset/P990340349?xid=plp_

product_2
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Robot Policy. For our policy, we are inspired by the architectural components introduced in Wang

et al. [365] and Zhao et al. [410]. A diagram of our policy architecture is shown in Figure E.3. For both

external and over-the-shoulder RGB images, we use a pretrained ResNet to �rst extract ×7 × 7 feature

maps and �atten these features across the spatial dimension to create a sequence of dv dimension tokens

where dv is the output dimension of ResNet. In particular, we use ResNet18 where dv = 512. We feed

as input to a causal transformer decoder a sequence learnable action tokens with dimension d. We use

the �attened image feature map as the keys and values and apply a cross-attention between the image

features and learnable tokens. We concatenate all modality tokens and add additional modality-speci�c

embeddings and sinusoidal positional embeddings.

The policy base is a transformer decoder similar to the one used in ACT [410]. The input sequence to

the transformer is a �xed position embedding, with dimensions k× 512 where k is the chunk size and the

keys and values are the combined image tokens from the stem. Given the current observation, we predict

a chunk of 5 actions, which corresponds to 1 second of execution. During inference time, we also apply

temporal ensembling similar to [410] withm = 0.5, which controls the weight of previous actions.

We train the policy for 20k update steps with batch size of 256 and a learning rate of 3e−4 (around 2

hours of wall time). For behavior cloning policies, the action dimension is 7 comprising of the robot joint

pose and the gripper state.
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Figure E.4: Task Rollouts
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E.2 HAND Algorithm

Algorithm 7 HAND Full Algorithm

Require: Hand demonstrationsDhand, o�ine play datsaetDplay, CoTracker3, Molmo-7B, # retrieved sub-trajectoriesK , threshold

ϵ, DINO, # visual �ltered sub-trajectoies M

/* Policy Pretraining */

1: Train πbase on Dplay using regular behavior cloning loss LBC

/* Sub-Trajectory Pre-processing */

2: Thand ← SubTrajSegmentation(Dhand, ϵ) ▷ Heuristic demo segmentation

3: Tplay ← SubTrajSegmentation(Dplay, ϵ) ▷ Heuristic demo segmentation

/* Retrieval using S-DTW and 2D Hand Paths Section 7.3.2 */

4: Dretrieved ← {}

5: for τhand ∈ Tplay do

6: ohand1:H ← image obs sequence of τhand

7: for τplay ∈ Tplay do

8: o
play
1:T ← image obs sequence of τplay

9: /* Visual Filtering */

10: Compute Cvisual(o
hand
1:H , o

play
1:T ) with DINO ▷ Equation (7.1)

11: T Mplay ←M sub-trajectories with lowest Cvisual

12: for τplay ∈ T
M
play do

13: o
play
1:T ← image obs sequence of τplay

14: (x, y)hand = Molmo(oH/2), (x, y)play = Molmo(oT/2) ▷ Get middle frame query point

15: phand = {(xt, yt)hand}
H
1 = CoTracker3((x, y)hand) ▷ Track hand point

16: pplay = {(xt, yt)play}
T
1 = CoTracker3((x, y)play) ▷ Track robot gripper point

17: phand = phand[: −1]− phand[1 :] ▷ Convert phand and pplay to relative 2D paths

18: pplay = pplay[: −1]− pplay[1 :]

19: (Cpath, τ
play
i:j )← S-DTW(phand, pplay) ▷ Path cost and corresponding retrieved sequence

20: AddK lowest Cpath τ
play
i:j sub-trajectories to Dretrieved

/* Parameter-E�cient Policy Fine-tuning */

21: Insert task-speci�c adapter LoRA layers θ in πbase

22: Update πbase on Dretrieved with loss LBC;θ ▷ Equation (7.2)

23: return πθ 289



E.3 User Studies

E.3.1 E�ciency of Hand Demonstrations

Teleoperation Hand Demo

Figure E.5: E�cient Demonstrations. Two users, unfamiliar with HAND are asked to collect trajectories
either via teleoperation (Left) or using their hands (Right). HAND retrieval achieves a 50% success rate with
the same amount of demonstrations using 3× less time. STRAP retrieval is unable to reach 50% even when
provided with more expert demonstrations.

In our �rst study, two users collect 10 demonstrations each either by manually teleoperating using a

VR controller or by providing a hand demonstration. For manual teleoperation, we explain to the users

how to operate the robot using the VR controller and allow them a couple trials to get accustomed to the

interface. For hand demonstrations, we ask the users to mimic the trajectory of the robot end e�ector using

their hands. Figure E.5 shows an example of a user performing both forms of demonstrations. We observe

that providing hand demonstrations is signi�cantly more time e�cient (over 3×) compared to manual

teleoperation. Furthermore, with just a single hand demonstration, we are able to learn a performant

policy with 50% success rate, while STRAP struggles even when provided 5 expert demonstrations.

E.3.2 Fast Adaptation to Long-Horizon Tasks

We conduct a small study demonstrating that HAND enables real-time fast, adaptation to unseen down-

stream tasks. Snapshots at various stages of this experiment is shown in Figure E.6. In our study, we
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Figure E.6: Fast Adaptation. We conduct a small-scale user study to demonstrate HAND’s ability to learn
robot policies in real-time. From providing the hand demonstration (Left), to retrieval and �ne-tuning a
base policy (Middle), to evaluating the policy (Right), we show that HAND can learn to solve the Blend

Carrot task with over 70% success rate in less than 3 minutes.

measure the total time required for a user to provide a hand demonstration of a new target task to evalu-

ating the performance of a �ne-tuned policy. The hand demonstration is simple to provide and typically

takes between 10 − 15 seconds to collect. Data preprocessing, which involves computing the 2D path

features of the hand demonstration and performing retrieval, takes around 30 − 40 seconds. We assume

that the o�ine play dataset is already preprocessed prior to the study and we do not include this time in

our estimate. We also assume a base policy has already been trained on this data; however, it performs

poorly on the target task. We �ne-tune the base policy with 4 LoRA adapter layers for 1000 batch updates,

which takes ∼ 2 minutes on a NVIDIA 4070 GPU. The resulting policy, which took less than 3 minutes to

train and achieves over 70% success rate, highlighting the e�cacy of HAND for real-time policy learning.

An uncut video of this study can be found on our project website at https://handretrieval.github.io/.
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E.4 Qualitative Retrieval Analysis

In Figure E.7, we provide more qualitative results comparing STRAP retrieval results to HAND on each

of our real robot tasks. Across all tasks, HAND retrieves more relevant trajectories that perform the task

demonstrated by the human hand.
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E.5 CALVIN Results

Method K=25 K=50 K=100 K=250

With Expert

FT 0.425 ± 0.059 - - -

Flow 0.694 ± 0.089 0.797 ± 0.045 0.633 ± 0.127 0.747 ± 0.039

STRAP 0.481 ± 0.119 0.286 ± 0.073 0.703 ± 0.075 0.600 ± 0.085

Without Expert

πbase 0.233 ± 0.024 - - -

CLIP 0.003 ± 0.004 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Flow 0.808 ± 0.080 0.831 ± 0.058 0.533 ± 0.106 0.653 ± 0.055

STRAP 0.000 ± 0.000 0.011 ± 0.010 0.006 ± 0.008 0.031 ± 0.004

HAND(+3D,-VF,-CW) 0.994 ± 0.004 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

HAND(-VF,-CW) 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

HAND(-VF) 1.000 ± 0.000 1.000 ± 0.000 0.997 ± 0.004 1.000 ± 0.000

HAND 0.828 ± 0.169 0.464 ± 0.061 0.536 ± 0.082 0.436 ± 0.136

Table E.1: Performance with and without expert demonstrations
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Method K=25 K=50 K=100 K=250

With Expert

FT 0.564 ± 0.309 - - -

Flow 0.092 ± 0.038 0.086 ± 0.017 0.156 ± 0.046 0.039 ± 0.039

STRAP 0.053 ± 0.034 0.075 ± 0.012 0.111 ± 0.014 0.094 ± 0.037

Without Expert

πbase 0.011 ± 0.010 - - -

CLIP 0.017 ± 0.024 0.033 ± 0.047 0.006 ± 0.004 0.031 ± 0.024

Flow 0.000 ± 0.000 0.247 ± 0.116 0.094 ± 0.046 0.053 ± 0.014

STRAP 0.058 ± 0.018 0.122 ± 0.022 0.075 ± 0.025 0.028 ± 0.024

HAND(+3D,-VF,-CW) 0.028 ± 0.008 0.047 ± 0.010 0.192 ± 0.049 0.139 ± 0.040

HAND(-VF,-CW) 0.186 ± 0.088 0.081 ± 0.017 0.364 ± 0.149 0.619 ± 0.092

HAND(-VF) 0.069 ± 0.042 0.167 ± 0.056 0.200 ± 0.123 0.325 ± 0.014

HAND 0.647 ± 0.229 0.483 ± 0.041 0.636 ± 0.103 0.431 ± 0.107

Table E.2: Performance with and without expert demonstrations
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Method K=25 K=50 K=100 K=250

With Expert

FT 0.000 ± 0.000 - - -

Flow 0.131 ± 0.085 0.344 ± 0.092 0.697 ± 0.082 0.581 ± 0.134

STRAP 0.200 ± 0.147 0.125 ± 0.042 0.056 ± 0.017 0.372 ± 0.220

Without Expert

πbase 0.036 ± 0.014 - - -

CLIP 0.025 ± 0.035 0.006 ± 0.008 0.019 ± 0.016 0.000 ± 0.000

Flow 0.017 ± 0.024 0.011 ± 0.008 0.364 ± 0.147 0.436 ± 0.031

STRAP 0.500 ± 0.131 0.600 ± 0.184 0.525 ± 0.150 0.633 ± 0.112

HAND(+3D,-VF,-CW) 0.333 ± 0.111 0.661 ± 0.093 0.814 ± 0.059 0.489 ± 0.136

HAND(-VF,-CW) 0.675 ± 0.065 0.719 ± 0.155 0.886 ± 0.032 0.431 ± 0.103

HAND(-VF) 0.428 ± 0.016 0.467 ± 0.138 0.828 ± 0.058 0.881 ± 0.034

HAND 0.136 ± 0.102 0.278 ± 0.073 0.186 ± 0.051 0.094 ± 0.017

Table E.3: Performance with and without expert demonstrations
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E.6 Real Robot Results

Task

Method
πbase STRAP HAND

K=10 K=25 K=50 K=10 K=25 K=50

Reach Green Block 1.0 2.5 2.0 2.5 6.0 7.5 5.0

Press Button 0.0 5.5 5.0 2.5 8.5 5.0 4.0

Close Microwave 0.5 5.0 2.5 4.0 7.0 8.0 4.5

Table E.4: Success rates out of 10 trials per task.

Task

Method
πbase STRAP HAND

K=10 K=25 K=50 K=10 K=25 K=50

Reach Green Block 1.0 3.0 1.0 1.0 6.5 7.0 6.0

Press Button 0.0 1.5 0.0 0.5 4.5 6.0 3.5

Close Microwave 0.5 0.0 0.0 0.0 8.0 4.0 1.0

Table E.5: Success rates out of 10 trials per task.
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Figure E.7: Qualitative Retrieval Examples. We show the top 5 matches fromDplay for STRAP (top) and
HAND (bottom) provided the hand demonstration for each of our evaluation tasks.
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Appendix F

BOSS

F.1 Dataset and Environment Details

F.1.1 ALFRED

F.1.1.1 Dataset Details

We base our dataset and environment on the ALFRED benchmark [328]. ALFRED originally contains over

6000 full trajectories collected from an expert planner following a set of 7 high-level tasks with randomly

sampled objects (e.g., “pick an object and heat it” ). Each trajectory has three crowdsourced annotations,

resulting in around 20k distinct language-annotated trajectories. We separate these into only the primitive

skill trajectories, resulting in about 141k language-annotated trajectories. Following Zhang et al. [404],

we merge navigation skills (e.g., “Walk to the bed” ) with the skill immediately following them as these

navigation skills make up about half of the dataset, are always performed before another skill, and are

di�cult to design online RL reward functions for that work across all house �oor plans given only the

information in the dataset for these skills. After this processing step, the resulting dataset contains 73k

language-annotated primitive skill trajectories.
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F.1.1.2 RL Environment Details

We modi�ed ALFRED similarly to Zhang et al. [404] and Pashevich, Schmid, and Sun [273] to make it

suitable for policy learning by modifying the action space to be fully discrete, with 12 discrete action

choices and 82 discrete object types.

Furthermore, we rewrote reward functions for all primitive skill types (“CoolObject”, “PickupObject”,

“PutObject”, “HeatObject”, “ToggleObject”, “SliceObject”, “CleanObject”) so that rewards can be computed

independently of a reference expert trajectory. While our rewards depend on the ground truth primitive

skill type, no agents are allowed access to what the underlying true primitive skill type is. All of our reward

function are sparse, with 1 for a transition that completes primitive skill and 0 for all other transitions.

F.1.1.3 Evaluation Tasks

We generate evaluation tasks by randomly sampling 10 tasks each for 4 unseen ALFRED �oor plans, re-

sulting in 40 total tasks unseen tasks requiring anywhere from 2-8 primitive skills to complete. The tasks

for each �oor plan are sampled randomly from the Valid-UnseenALFRED dataset collected in these plans

with the speci�c object arrangements, and we use the high-level task language descriptions collected by

humans for ALFRED as our task descriptions for language-conditioned zero-shot evaluation. See Figure F.1

for a histogram of task lengths.

F.1.2 Language Model Prompts

We use two prompts when using the LLM for two di�erent purposes. The main purpose of the LLM is to

propose a distribution over next skills to chain with currently executed skills during skill bootstrapping

(Section 8.3.2). Thus, we pass skills in the given skill library Z into the prompt and ask it to predict the

next skill. We also include a �xed set of 7 in-context examples from a random sample of di�erent tasks

from the ALFRED training dataset. The prompt for bootstrapping is shown in Figure F.2.
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Figure F.1: Task lengths regarding the number of primitive skills needed to chain together to solve the
task.

We also generate summaries (see Section 8.3.2 and appendix Appendix F.2.3) for composite skill an-

notations with the LLM. These summaries are used to label newly chained longer-horizon skills before

adding them back to the skill library. We show the prompt for this in Figure F.3.

F.2 Training Implementation details and Hyperparameters

We implement IQL [171] as the base o�ine RL algorithm to pre-train on primitive skill data for all methods,

baselines, and ablations, due to its strong o�ine and �netuning performance on a variety of dense and

sparse reward environments.

The IQL policy is trained to maximize the following objective:

eβ(Q(s,a)−V (s)) log π(a|s),

which performs advantage-weighted regression [278] with an inverse temperature term β. Q and V are

trained on (s, a, s′, r, a′) tuples from the dataset rather than sampling a policy for a′ to mitigate issues
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Examples of common household tasks and their descriptions:
Task Steps: 1. Pick up the keys on the center table. 2. Put the keys in the box. 3. Pick up the box with keys. 4.
Put the box with keys on the sofa close to the newspaper.
Task: Put the box with keys on the sofa.

Task Steps: 1. Pick up the knife from in front of the tomato. 2. Cut the lettuce on the counter. 3. Set the knife
down on the counter in front of the toaster. 4. Pick up a slice of the lettuce from the counter. 5. Put the lettuce
slice in the refrigerator. take the lettuce slice out of the refrigerator. 6. Set the lettuce slice on the counter in
front of the toaster.
Task: Put a cooled slice of lettuce on the counter.

Task Steps: 1. Pick up the book on the table, in front of the chair. 2. Place the book on the left cushion of the
couch.
Task: Put a book on the couch.

Task Steps: 1. Pick up the fork from the table. 2. Put the fork in the sink and �ll the sink with water, then
empty the water from the sink and remove the fork. 3. Put the fork in the drawer.
Task: Put the cleaned fork in a drawer.

Task Steps: 1. Take the box of tissues from the makeup vanity. 2. Put the tissues on the barred rack. 3. Take
the box of tissues from the top of the toilet. 4. Put the tissues on the barred rack.
Task: Put the box of tissues on the barred rack.

Task Steps: 1. Pick up the glass from the sink. 2. Heat the glass in the microwave. 3. Put the glass on the
wooden rack.
Task: Put a heated glass on the wooden rack.

Task Steps: 1. Pick up the box from the far side of the bed. 2. Hold the box and turn on the lamp.
Tasks: Look at the box under the lamp light.

Predict the next skill correctly by choosing from the following skills: [SKILL 1 IN LIBRARY], [SKILL 2 IN
LIBRARY], ...
Task Steps: 1. [SKILL 1 EXECUTED SO FAR] 2. [SKILL 2 EXECUTED SO FAR] ... N. ____

Figure F.2: Prompt for the LLM for next skill proposal (Section 8.3.2). Text is generated after listing out all
skills completed so far.
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Instructions: give a high-level description for the following steps describing common household tasks.

Task Steps: 1. Pick up the keys on the center table. 2. Put the keys in the box. 3. Pick up the box with keys. 4.
Put the box with keys on the sofa close to the newspaper.
Summary: Put the box with keys on the sofa.

Task Steps: 1. Pick up the knife from in front of the tomato. 2. Cut the lettuce on the counter. 3. Set the knife
down on the counter in front of the toaster. 4. Pick up a slice of the lettuce from the counter. 5. Put the lettuce
slice in the refrigerator. take the lettuce slice out of the refrigerator. 6. Set the lettuce slice on the counter in
front of the toaster.
Summary: Put a cooled slice of lettuce on the counter.

Task Steps: 1. Pick up the book on the table, in front of the chair. 2. Place the book on the left cushion of the
couch.
Summary: Put a book on the couch.

Task Steps: 1. Pick up the fork from the table. 2. Put the fork in the sink and �ll the sink with water, then
empty the water from the sink and remove the fork. 3. Put the fork in the drawer.
Summary: Put the cleaned fork in a drawer.

Task Steps: 1. Take the box of tissues from the makeup vanity. 2. Put the tissues on the barred rack. 3. Take
the box of tissues from the top of the toilet. 4. Put the tissues on the barred rack.
Summary: Put the box of tissues on the barred rack.

Task Steps: 1. Pick up the glass from the sink. 2. Heat the glass in the microwave. 3. Put the glass on the
wooden rack.
Summary: Put a heated glass on the wooden rack.

Task Steps: 1. Pick up the box from the far side of the bed. 2. Hold the box and turn on the lamp.
Summary: Look at the box under the lamp light.

Task Steps: 1. [SKILL 1] 2. [SKILL 2] 3. [SKILL 3] ...
Summary:

Figure F.3: Prompt for the LLM to summarize completed skills into high-level composite annotations, fol-
lowing Zhang et al. [404].
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with critic function overestimation common in o�ine RL. We detail shared training and implementation

details below, with method-speci�c information and hyperparameters in the following subsections.

F.2.1 ALFRED Environment

We implement the same observation and action space as Zhang et al. [404]. Details are listed below.

Observation space. The observations given to agents are 300 × 300 RGB images. For all methods,

we �rst preprocess these images by sending them through a frozen ResNet-18 encoder [133] pre-trained

on ImageNet, resulting in a 512× 7× 7 observation.

Action space. The agent chooses from 12 discrete low-level actions. There are 5 navigation actions:

MoveAhead, RotateRight, RotateLeft, LookUp, and LookDown and 7 interaction actions: Pickup, Put,

Open, Close, ToggleOn, ToggleOff, and Slice. For interaction actions the agent additionally selects one

of 82 object types to interact with, as de�ned by Pashevich, Schmid, and Sun [273]. In total, the action

space consists of 5+ 7 ∗ 82 = 579 discrete action choices. For all methods, due to the large discrete action

space, we perform the same action masking as Zhang et al. [404] to prevent agents from taking actions that

are not possible by using ground truth object properties given by the ALFRED simulator for each object

in the scene. For example, we do not allow the agent to Close objects that aren’t closeable or ToggleOn

objects that can’t be turned on.

Policy and critic networks. We use the transformer architecture (and hyperparameters) used by

Episodic Transformers (ET) [273] for our policy and critic networks. We implement all critics (two Q

functions and one V ) with a shared backbone and separate output heads. Additionally, we use Layer-

Norms [18] in the MLP critic output heads as recommended by Ball et al. [23]. All networks condition on

tokenized representations of input language annotations.

Hyperparameters. Hyperparameters were generally selected from tuning theOracle baseline towork

as best as possible, then carried over to all other methods. Shared hyperparameters for all methods (where
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applicable) for pre-training on primitive skills are listed below. Any unlisted hyperparameters or imple-

mentation details are carried over from Pashevich, Schmid, and Sun [273]:

Param Value

Batch Size 64

# Training Epochs 150

Learning Rate 1e-4

Optimizer AdamW

Dropout Rate 0.1

Weight Decay 0.1

Discount γ 0.97

Q Update Polyak Averaging Coe�cient 0.005

Policy and Q Update Period 1 per train iter

IQL Advantage Clipping [0, 100]

IQL Advantage Inverse Temperature β 5

IQL Quantile τ 0.8

Maximum Observation Context Length 21

When �ne-tuning policies (for Oracle, CIC, and BOSS), we keep hyperparameters the same. We �ne-

tune one policy per �oor plan (zero-shot evaluating on 10 tasks in each �oor plan) in our ALFRED task set

so that the aggregated results are reported over 4 runs per seed. For methods that use a skill library (BOSS,

Saycan, Saycan+P), all available primitive skills across all evaluation tasks in each �oor plan compose the

starting skill library, resulting in anywhere from 15-40 available skills depending on the �oor plan.

Additionally, when �netuning the Oracle baseline along with BOSS and its ablations, we sample old

data from the o�ine dataset and newly collected data at equal proportions in the batch, following sugges-

tions from [23]. We do not do this for CIC when �netuning with its unsupervised RL objective because
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the language embeddings from the old data are not compatible with the online collected data labeled with

CIC-learned skill embeddings. Fine-tuning hyperparameters follow:

Param Value

# Initial Rollouts 50

# Training Steps to Env Rollouts Ratio 15

ϵ in ϵ-greedy action sampling 0.05

Discrete action sampling True

# Parallel Rollout Samplers 10

F.2.2 Real Robot Environment

The input observation from the environment includes environment RGB input and robot states. The

RGB input consists of the third-person view RGB images from a Logitech Pro Webcam C920 cropped to

224×224×3, and wrist view images from an Intel RealSense D435. We use a pretrained R3M [252] model

to get the latent representation for each view. The robot states include the robot’s end-e�ector position,

velocity, and gripper state. The end-e�ector position and velocity are two continuous vectors, and the

gripper state is a one-hot vector, which presents OPEN, CLOSE, or NOT MOVE. We concatenate the RGB

latent representations and robot states together as environment states.

The policy is language conditioned, and we use a pre-trained sentence encoder to encode the language

annotation to a 384-dimensional latent vector. The pretrained sentence encoderwe use is all-MiniLM-L12-v2

from the SentenceTransformers package [298].

The total state input dimension is 2048 (third-person R3M) + 2048 (wrist R3M) + 15 (robot state input)

+ 384 (language latent representation) = 4495.
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Action space. The action space of the robot encompasses the di�erence in the end e�ector position be-

tween each time step, along with discrete open and close signals for the gripper. These actions are trans-

mitted to the robot with 10HZ and interpreted as desired joint poses using PyBullet’s inverse kinematics

module.

In line with [410], we adopt the Action Chunking method to train an autoregressive policy. Our policy

utilizes an LSTM model to predict the next 15 actions, given the initial observation as input, denoted as

π(at:t+15|st). Both our Q and Value networks are recurrent as well, estimating rewards on a per-timestep

basis for each action in the sequence. Similar to the policy, these networks only have access to the obser-

vation preceding the action sequence initiation.

Due to the gripper action space is discrete and imbalanced distributed in the dataset, we reweigh

gripper loss inversely proportionally to the number of examples in each class.

F.2.3 Additional BOSS Implementation Details

Here we continue discussion of BOSS in detail. In the main text in Section 8.3.2 we mention that we add

learned skills back to the agent’s skill repertoire and then train on collected experience gathered from each

rollout. Here, we detail exactly how we do that.

Labeling new composite skills. Finally, after we have �nished attempting a composite skill chain, we

need a natural language description for it so we can train the language-conditioned policy on this new

composite skill. We ask the LLM to generate high-level task descriptions of the annotations of the two

skills the agent has just attempted to chain together like proposed by Zhang et al. [404] for o�ine policy

pre-training. Doing so will allow the agent to learn skills at a higher level of text abstraction, allowing the

agent to operate on more natural evaluation task speci�cations. For example, humans are more likely to

ask an agent to “Make co�ee” than to say “Get a co�ee pod. Put the co�ee pod in the machine. Fill it up

with water...”
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We give the LLM a prompt similar to the one for generating next skills. For example, if our agent has

just completed two skills: “Pick up the spoon”, “Put the spoon on the counter”, we ask the LLM to summarize

“1. pick up the spoon. 2. put the spoon on the counter.”, and the LLM can generate “put a spoon

on the counter.” We denote the generated language annotation for this combined skill composed of the

annotations of z1 and z2 as z′. We then add z′ as a new composite skill to Z for the agent to possibly

sample from again.

Training on new skill data. After the agent has �nished a rollout in the environment, it trains on the

experience gathered. There are three types of data that we add to the agent’s replay bu�er from its rollout

data:

1. The trajectory of the attempted skill chainwhich is collected only if the entire �rst skill is successfully

executed (regardless if it is a primitive skill or a chain of them) since only then will another skill be

used for chaining. The label for this trajectory is produced by the LLM.

2. The trajectory of the composite skill but with a label generated by concatenating the primitive skill

annotations as a sequence of sentences of their language annotations. This trajectory ensures that

the agent receives a description for the collected composite trajectory that speci�es the exact prim-

itive skills that make it up, in order. This is useful because the LLM-generated high-level skill de-

scription may not describe certain steps. Those steps are explicitly spelled out in this new label.

3. Trajectories for all lowest-level primitive skills executed during the rollout. These correspond to the

original set of skills the policy was equipped with and will help the policy continue to �netune its

ability to execute its original primitive skills.

After the rollout, we add these trajectories to the agent’s replay bu�er.
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Other details. When performing skill bootstrapping in the ALFRED environment, we set a max time

limit (T in Algorithm 8) for 40 timesteps per primitive skill. For simplicity, we restrictM , the max number

of skills to chain, to be 2 during skill bootstrapping rollouts. We also restrict the second skill to be chained

to only the set of primitive skills so that the agent can only learn new skill chains that are one primitive

skill longer than the �rst sampled skill. Note that this does not restrict the agent from sampling composite

skills it has learned during bootstrapping as �rst skills upon initialization.

One �nal implementation detail is with respect to how we map LLM next skill proposals to existing

skills in the skill library Z . We found that pre-trained sentence embedding models generally seem to put

great emphasis on the nouns of skill annotation sentences in ALFRED, instead of the verb. Therefore, all

sentence embeddings models we initially experimented with (up to the 11B parameter model FLAN-T5-

XXL [62]) would have a tendency to map LLM generations such as “Place the apple in the sink” to skills

with di�erent verbs as long as the nouns were the same, such as “Pick up the apple from the sink”. These

skills are clearly very di�erent, so this presented a problem to us initially. To solve this, we settled on

using an NLP library∗ to extract the main verb of sentences and then added that same verb as a pre�x

to each sentence before embedding with the sentence embedding model. For example, “Place the apple

in the sink” → “PLACE: Place the apple in the sink.” With this change, the aforementioned issue was

addressed in most cases and we could use much smaller sentence embedding models (all-mpnet-v2 from

the SentenceTransformers package [298]).

Training Time andHardware Requirements We perform experiments on a server with 2 AMDEPYC

7763 64-Core Processors, and 8 RTX 3090 GPUs. Pre-training the policies takes around 10 hours with just

a single RTX 3090 and 4 CPU threads for parallel dataloading.

Skill bootstrapping experiments require just 1 GPU with su�cient VRAM to run inference with our

LLM, along with 4 available CPU threads for parallel dataloading and environment rollouts. In practice, a

∗https://github.com/chartbeat-labs/textacy
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single RTX 3090 is su�cient for our experiments using LLaMA-13B with 8-bit inference [79] on ALFRED,

requiring around 3-5 days of training, mainly due to the speed of the underlying simulator used in ALFRED.

F.2.4 CIC Implementation

For fairness in our experimental comparison, we implement CIC [178] by using its objective to train a

policy pre-trained on the same dataset as BOSS; thus, the CIC agent is �rst initialized with a set of sensi-

ble behaviors. Since CIC operates on a �xed latent space, we modi�ed the critic and policy architectures

so that they operate on �xed-length, 768-dimensional embeddings of language inputs from the same sen-

tence embedding model used for skill bootstrapping [298] instead of on variable length tokenized language

representations.

CIC-speci�c hyperparameters follow:

Param Value

CIC K-means K 12

CIC K-means avg True

CIC Hidden Dim 1024

CIC Latent Skill Dim 768

CIC Temp 0.5

CIC Skill Projection Layer True

# Timesteps for each skill rollout before reset 200

F.2.5 SayCan Implementation

We implement SayCan [7] by combining the prompt from SayCan with ours. We use the same in-context

examples except but convert them to a human-robot conversation. All other details are the same, including

the LLM that we use in this comparison (LLaMa-13b [352]). The Saycan prompt follows below:
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Robot: Hi there, I’m a robot operating in a house. Robot: You can ask me to do various tasks and I’ll

tell you the sequence of actions I would do to accomplish your task.

Human: How would you put the box with keys on the sofa?

Robot: 1. Pick up the keys on the center table. 2. Put the keys in the box. 3. Pick up the box with

keys. 4. Put the box with keys on the sofa close to the newspaper.

Human: How would you put a cooled slice of lettuce on the counter?

Robot: 1. Pick up the knife from in front of the tomato. 2. Cut the lettuce on the counter. 3. Set the

knife down on the counter in front of the toaster. 4. Pick up a slice of the lettuce from the counter. 5.

Put the lettuce slice in the refrigerator. take the lettuce slice out of the refrigerator. 6. Set the lettuce

slice on the counter in front of the toaster.

Human: How would you put a book on the couch?

Robot: 1. Pick up the book on the table, in front of the chair. 2. Place the book on the left cushion of

the couch.

Human: How would you put the cleaned fork in a drawer?

Robot: 1. Pick up the fork from the table. 2. Put the fork in the sink and �ll the sink with water, then

empty the water from the sink and remove the fork. 3. Put the fork in the drawer.

Human: How would you put the box of tissues on the barred rack?

Robot: 1. Take the box of tissues from the makeup vanity. 2. Put the tissues on the barred rack. 3.

Take the box of tissues from the top of the toilet. 4. Put the tissues on the barred rack.
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Human: How would you put a heated glass on the wooden rack?

Robot: 1. Pick up the glass from the sink. 2. Heat the glass in the microwave. 3. Put the glass on the

wooden rack.

Human: How would you look at the box under the lamp light?

Robot: 1. Pick up the box from the far side of the bed. 2. Hold the box and turn on the lamp.

Predict the next skill correctly by choosing from the following skills: [SKILL 1 IN LIBRARY],

[SKILL 2 IN LIBRARY], ...

Human: How would you [HIGH LEVEL TASK DESCRIPTION]?

Robot: 1. [SKILL 1 EXECUTED SO FAR] 2. [SKILL 2 EXECUTED SO FAR] ... N. ____

F.2.6 ProgPrompt Implementation

ProgPrompt [331] converts natural language queries to code and executes the code on a real robot. After

consulting with the authors, we converted the examples in our prompt to one suitable for ProgPrompt by

converting task descriptions into a code representation by converting spaces into underscores, e.g., “Pick

up the milk” into def pick_up_the_milk() . Then, to translate code commands into commands suitable

for our pre-trained policy, we prompt ProgPrompt to output pick_and_place(object, object) style code

commands that we convert into two separate pick and place natural language commands in the same

format as the instructions used for pre-training the policy. We then execute these instructions on the real

robot in sequence.
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BOSS

SAYCAN + P

CIC

Task: Put a clean bar of soap on the counter. Completed Subtask

3/3

0/3

0/3

(a) Length 3 Task Example

BOSS

SAYCAN + P

CIC

Task: Pick up the disc and turn on the lamp on the desk. Completed Subtask

2/2

0/2

0/2

(b) Length 2 Task Example

Figure F.4: Qualitative visualizations of zero-shot evaluation rollouts. See the plans SayCan+P generated
for these two tasks at the top of Figure F.6.
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Task: Clean the black bowl and put in the gray plate.

BOSS

Completed
Tasks

4/4

Figure F.5: Example of a BOSS rollout after skill bootstrapping on task 4: “Clean the black bowl and put it
in the gray plate.” BOSS is able to complete all 4 tasks in this rollout after performing skill bootstrapping.

F.3 Additional Results

F.3.1 ALFRED Results

SayCan Performance Analysis. Here, we analyze the performance of the SayCan baselines in great

detail to determine how and why they perform poorly. SayCan errors occur for two reasons: (1) Planning

errors in which the LLM fails to output the correct low-level instruction based on the high level task

description, and (2) Policy execution errors in which the policy fails to execute the task correctly, given

the correct instruction.

Qualitative examples of BOSS compared to SayCan+P and CIC are shown in Figure F.4, where we see

that SayCan+P is unable to solve either task. Why is this? The �rst two plans in Figure F.6 correspond to

the top two tasks in Figure F.4. As we can see, SayCan+P generated the correct �rst step but the policy

failed to execute the skill as SayCan does not �ne-tune policies in the environment. While Figure F.6

demonstrates that SayCan+P can make partial progress towards certain tasks, it relies on zero-shot LLM

execution over �xed policies and therefore does not �ne-tune the policies in the environment nor learn to

chain them together so that the policy is robust enough to transition between skills in new settings.

We analyze the overall proportions of policy execution failures and planning failures for the SayCan

baselines in Table F.1. We see that SayCan mostly fails at planning (57.5% of the time) while SayCan+P,
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Task: Put a clean bar of soap on the counter. (Execution Fail)

Ground Truth

1. Pick up the bar of soap.

2. Put the bar of soap in the sink, turn the wa-
ter on and then o� and then pick up the bar
of soap.

3. Put the soap down in between the two
sinks.

SayCan+P Generated Plan

1. Pick up the bar of soap.

Task: Pick up the disc and turn on the lamp. (Execution Fail)

Ground Truth

1. Pick up the disc on the desk.

2. Turn on the lamp on the desk.

SayCan+P Generated Plan

1. Pick up the disc on the desk.

Task: Examine a bowl by the lamp. (Planning Fail)

Ground Truth

1. Pick up the bowl on the desk.

2. Turn on the lamp.

SayCan+P Generated Plan

1. Pick up the bowl on the desk.

2. Pick up the bowl on the desk.

Task: Put cooked apple slice on a counter. (Planning Fail)

Ground Truth

1. Pick up the butter knife that is in front of
the bowl on the counter.

2. Cut the apple that is in the garbage can into
slices.

3. Put the knife in the garbage can.

4. Pick up a slice of apple that is in the garbage
can.

5. Put the apple in the microwave and turn it
on to cook, remove the cooked apple from
the microwave.

6. Put the slice of apple on the counter to the
right of the statue.

SayCan+P Generated Plan

1. Pick up a slice of apple that is in the garbage
can.

Figure F.6: Example plans from SayCan+P [7] evaluated on EVALINSTRUCT. SayCan+P errors mainly come
from policy execution failures.
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using BOSS’ skill proposal mechanism, mainly fails at execution. Meanwhile, SayCan+PF performs simi-

larly to SayCan+P, indicating that naïve �ne-tuning does not greatly improve the success rate of the �nal

plans.

Table F.1: Comparison of SayCan and Say-
Can+P Methods

Method
Failure Rate (%)

Planning Execution

SayCan 57.5 42.5

SayCan+P 4.2 95.8

SayCan+PF 5.0 95.0

SayCan+BOSS. Here, we test one more method which

combines the advantages of top-down LLM planningmethods

like SayCan with BOSS’ ability to enable agents to learn how

to chain together skills directly in the target environment. We

evaluate SayCan+BOSS, a baseline which breaks down high-

level task instructions using SayCan and then issues the com-

mands to BOSS agents after they have performed skill boot-

strapping in the target environments. Results in the below

table indicate that this baseline performs much better than

BOSSalone, indicating that BOSS’ LLM-guided skill bootstrapping enables it to learn robust policies that

can even be combined with planners to better execute the given plans than naïve �ne-tuning with Say-

Can+PF. Yet if there is no powerful LLM available at test time, BOSS alone still performs very well.

Evaluation Task Length Average

Method Length 2 Length 3 Length 4 Return Success

No Bootstrap 0.03 +- 0.02 0.05 +- 0.07 0.08 +- 0.09 0.03 +- 0.01 0.00 +- 0.00

CIC [178] 0.02 +- 0.02 0.25 +- 0.08 0.18 +- 0.07 0.11 +- 0.01 0.00 +- 0.00

SayCan [7] 0.06 +- 0.02 0.14 +- 0.00 0.10 +- 0.12 0.06 +- 0.00 0.00 +- 0.00

SayCan + P 0.08 +- 0.04 0.28 +- 0.00 0.20 +- 0.15 0.12 +- 0.01 0.00 +- 0.00

SayCan + PF 0.64 +- 0.06 0.49 +- 0.20 0.59 +- 0.02 0.57 +- 0.05 0.00 +- 0.00

BOSS (ours) 0.47 +- 0.12 0.59 +- 0.13 0.81 +- 0.13 0.57 +- 0.06 0.57 +- 0.14

SayCan+BOSS (ours) 0.84 +- 0.16 0.87 +- 0.18 0.96 +- 0.13 0.84 +- 0.06 1.02 +- 0.12
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Table F.2: Full returns and success rates for real robot evaluation comparisons.

Task ProgPrompt return ProgPrompt success rate BOSS return BOSS success rate
1 1.6± 0.80 0.8 1.6± 0.8 0.8
2 1.0± 1.00 0.5 0.8± 0.75 0.2
3 0.9± 0.78 0.0 1.7± 1.1 0.1
4 2.0± 1.2 0.0 2.2± 0.98 0.2

F.3.2 Real Robot Results

We evaluate on 4 tasks, detailed below, in the environment setup shown in Figure F.5.

1. Clean the black bowl (length 2): (1) Pick up the black bowl, (2) put it in the sink.

2. Put the black bowl to the dish rack (length 2): (1) Pick up the black bowl, (2) put it in the dish rack.

3. Clean the black bowl and put it in the dish rack (length 4): (1) Pick up the black bowl, (2) put it in

the sink, (3) pick up the black bowl, (4) put it in the dish rack.

4. Clean the black bowl and put it in the gray plate (length 4): (2) pick up the black bowl, (2) put it in

the sink, (3) pick up the black bowl, (4) put it in the plate.

We report full results in Table F.2.
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Algorithm 8 BOSS Algorithm

Require: Dataset DL w/ language labels, LLM, Skill Library Z , Time limit T , max chain lengthM
1: Pre-train policy π(a|s, z), value function V (s, z) on DL with o�ine RL. ▷ Section 8.3.1
2: while not converged do

3: SkillBootstrapping(V, Z, LLM, π, DL,M , T ) ▷ Section 8.3.2

4:

5: procedure SkillBootstrapping(V, Z, LLM, π, DL,M , T )
6: s1 ← Reset environment
7: RolloutData← []
8: z ← sample from discrete distribution with probs

[
V (s, z1), V (s, z2), ..., V (s, z|Z|)

]
.

9: i← 0
10: Success← True
11: while i < M and Success do ▷ If a rollout fails, break the loop.
12: i← i+ 1
13: (Success, τ )← Rollout π(·|s, z) in Environment for at most T steps.
14: Add τ to RolloutData
15: if Success then

16: z ← SampleNextSkill(LLM, RolloutData, Z)

17: UpdateBufferAndSkillRepertoire(DL, RolloutData, LLM)

18: Train π, V on DL with o�ine RL.

19:

20: procedure SampleNextSkill(LLM, RolloutData, Z)
21: AllSkills← extract all skill annotations from Z .
22: SkillChain← extract executed primitive skills from RolloutData.
23: Prompt← construct prompt from AllSkills, SkillChain. ▷ Prompt in Figure F.2.
24: ([ẑ1, ..., ẑN ], [p1, ..., pN ]) ← Sample N text generations from LLM(Prompt) with average token

probabilities p1, ..., pN .
25: Find closest match in Z to each of ẑ1, ..., ẑN in embedding space ▷ Embedding model:

all-mpnet-base-v2 from Reimers and Gurevych [298].
26: z ← sample the matches in Z from categorical distribution with parameters p1, ..., pN .
27: return z

28:

29: procedure UpdateBufferAndSkillRepertoire(DL, RolloutData, Z , LLM) ▷ See Appendix F.2.3
for details.

30: τ1, ..., τk ← extract primitive skill trajectories from RolloutData.
31: for τi in τ1, ..., τk do
32: DL ← DL ∪ {τi,zi} ▷ Add trajectory to DL with annotation zi.

33: τ1:k ← concatenate all trajectories together
34: zLLM,1:k ← LLM(τ1:k) assign name by asking LLM summarize annotations of τ1:k. ▷ See

Appendix F.1.2 for prompt.
35: zconcat,1:k ← “{z1}.{z2}...{zk}.’ ▷ Assign another label for the trajectory by concatenating

primitive skill annotations.
36: DL ← DL ∪ {τLLM,1:k, τconcat,1:k} ▷ Add to DL with annotation zLLM,1:k and zconcat,1:k.
37: Add zLLM,1:k as a new skill to Z .
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Appendix G

REWIND

G.1 Implementation Details

This section introduces implementation details for ReWiND in terms of the datasets, reward model, policy

training, and online RL.

G.1.1 ReWiND Implementation

Full pseudocode for ReWiND is listed in Algorithm 9. Individual implementation details follow.

G.1.1.1 Open-X Dataset

Belowwe list details of the OXE subset,Dopen-x, used for training the reward modelRψ(o1:t, z) (mentioned

in Section 10.3.1.1).

We select a subset of datasets from the Open-X Dataset [67]. The subset includes Bridge-V2 [362], BC-

Z [151], Fractal [39], CLVR Jaco Play [76], Berkeley Autolab UR5 [53], Berkeley Fanuc Manipulation [418],

CMU Stretch [20, 239], Stanford Hydra [26], UCSD Kitchen [384], Austin BUDS [419], and Austin Sir-

ius [206]. These datasets were selected for their high-quality, task-oriented manipulation trajectories (i.e.,

no play data or extremely high-level annotations). These datasets provide around 350k trajectories and 58k

total unique task annotations. To ensure meaningful trajectories for training the ReWiND reward model,
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Algorithm 9 ReWiND Algorithm, Section 10.3.

Require: Demo dataset Ddemos, Pre-trained LLM, Open-X subset Dopen-x, Reward Model Rψ(o1:t, z), Pol-
icy π. Ddemos includes video trajectories o1:t and language embedding z.

1: /* Train the Reward Model Section 10.3.1 */
2: RewardModelTraining(Rψ(o1:t, z), Ddemos, Dopen-x)
3: /* Policy Pretraining Section 10.3.2 */
4: OfflinePolicyPretraining(Rψ(o1:t, z), Ddemos, π)
5: /* Learn New Task Online Section 10.3.2 */
6: OnlineRL(znew, Rψ(o1:t, z), π )
7:

8: procedure RewardModelTraining(Rψ(o1:t, z), Ddemos, Dopen-x)
9: Augment instruction labels with LLM
10: Sample a video clip and annotation ot1:t2 , z from Ddemos or Dopen-x.
11: Choose to keep the original video or perform RewindAugmentation.
12: if perform RewindAugmentation then

13: orewound ← RewindAugmentation(ot1:t2)
14: Optimize Rψ(o1:t, z) with Lrewind(o

rewound, z) ▷ Equation (10.2)
15: else

16: Sample a di�erent video clip oother
t′1:t

′

2

17: Optimize Rψ(o1:t, z) with Lprogress(ot1:t2 , z, o
other
t′1,t

′

2

) ▷ Equation (10.1)

18:

19: procedure OfflinePolicyPretraining(Rψ(o1:t, z), Ddemos, π)
20: Relabel Ddemos with r̂o� coming from Rψ(o1:t, z). ▷ Equation (10.4)
21: Train π with o�ine RL on relabeled Ddemos.

22:

23: procedure OnlineRL(Rψ(o1:t, z), π)
24: For every rollout label the trajectories with r̂on from Rψ(o1:t, z). ▷ Equation (10.5)
25: Optimize π with online RL Algorithm

26:

27: procedure RewindAugmentation(ot1:t2 ) ▷ Section 10.3.1.2
28: Sample random split point i between t1 and t2.
29: Sample # frames to rewind for, k
30: Reverse oi−k:i and concat with ot1:i
31: Return [ot1:i−1, oi:i−k]
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Unsuccessful Policy Rollout: Push the Button

LIV LIV-FT

1

-1

0

Time

RoboCLIP VLC GVL ReWiND

Corresponding Reward Plots

Figure G.1: Unsuccessful policy rollout for the “Push the Button” task in Meta-World and its corresponding
rewards below it. ReWiND predicts calibrated rewards that re�ect better partial progress when the policy
gets stuck near the button.

we postprocess the data to remove trajectories with less than 5 timesteps. We subsample the videos in the

datasets to 16 frames for reward model training, as we did not see a noticeable bene�t from training it with

longer videos.

G.1.1.2 Reward Function

We picture the overall architecture of the reward function in Figure G.2. We encode input images with the

pre-trained DINO-v2 base model (86M params) with 768 embedding size. Similarly, we encode language

with the pre-trained all-minilm-l12-v2model with a 384 embedding size. We project image and language

embeddings to 512 dimensions with a single linear layer. We treat the language embedding as a single

input token and we evenly downsample DINO-v2 image embeddings for every observation sequence to 16

frames.

The cross-modal sequential aggregator takes these tokens as input and produces a per-image embed-

ding used by anMLP to produce per-timestep rewards. The cross-modal sequential aggregator is a causally
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Multi-Head 
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Cross-Modal Sequential Aggregator

“Separate the blue 
and red cups.”

Video Sequence
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Figure G.2: ReWiND’s Reward Model Architecture. It’s composed of frozen language and image input
embeddings projected to a shared hidden dimension of 512. These embeddings are treated as input tokens
to the cross-modal sequential aggregator transformer composed of 4 causally masked transformer layers
composed of 8 multi-head attention blocks each. Per-timestep embeddings for each input observation are
fed into an MLP to predict rewards for each timestep.

masked transformer (PyTorch nn.TransformerEncoder) composed of 4 layers, each with 8 heads with

a combined hidden dimension of 2048. We add a learnable positional embedding to only the �rst frame

of the video sequence embedding. In the ReWind reward function training phase, we trained 2k steps for

Meta-World and 10k steps for Real-World robot experiments, with a batch size of 1024. Each batch includes

80% data from Dopen-x and 20% target environment data from Ddemos. Each video in the batch has an 80%

probability of having video rewind augmentation, and independently, a 20% percent probability of having

a mismatched video-language pairing with 0 progress target (see Section 10.3.1). In order to better policy

execution videos that look close to success, 10% of the rewound videos will only have their last 3 frames re-

wound. No extensive tuning was performed on these per-sample rewind and mismatch probabilities; they

were heuristically chosen during initial small-scale experimentation and then �xed for all experiments.
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G.1.1.3 Policy Training

Speci�c architectural and training details are discussed per-environment in the corresponding sections

Appendix G.2.2 and Appendix G.3.2. Below we talk about high level algorithmic details for policy training

along with shared implementation details across environments.

Policy Input. Similar to the reward model, we condition the policy on frozen pre-trained image and

language embeddings: DINO-v2-base image embeddings (86M params, 768 embedding size) [269] along

with all-minilm-l12-v2 language embeddings of size 384 from the Sentence Transformers python pack-

age [298].

O�line RL. We use Implicit Q Learning (IQL) [171] as prior work found it performant and easy to

tune for robot manipulation with action-chunked policies [407, 405, 373]. IQL trains on in-distribution

(s, a, s′, r, a′) tuples from the dataset, avoiding policy-sampled a′ to ensure the Q- and value functions

accurately re�ect returns restricted to dataset actions. The value function is optimized with expectile

regression, controlled by a hyperparameter τ : τ = 0.5 recovers mean squared error, while τ → 1 yields

a more optimistic estimate, helping the value function “stitch” together distant rewards in sparse settings.

The policy is trained via advantage-weighted regression [277], maximizing

eβ(Q(s,a)−V (s)) log π(a|s),

where β is a temperature hyperparameter controlling how “spiky” the policy loss is. To prevent numerical

instability, the exponential term is capped at a maximum value in practice (for us, this is 100).

OnlineRL. Weuse a custom soft-actor critic (SAC) [122] implementation initialized with the pre-trained

policy from o�ine RL alongwith the Q and target Q functions. We follow best practices from recent o�ine-

online RL �ne-tuning work [416, 24], namely:
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• 5-10 critics instead of 2, with random sampling of critics

• LayerNorm in the critic and possibly LayerNorm in the policy

• A higher update-to-data ratio in the critics

• “Warm-starting” online RL by running with the frozen pre-trained policy for the �rst few thousand

environment steps [416, 356]

• Possibly sampling o�ine pre-training data at a 50% ratio during online RL

• Removing the SAC entropy term from the target critic

We found that by default, e�cient o�ine-online learning algorithms did not work very well “out of the

box” for learning new tasks on our real robot. This is perhaps because they focus speci�cally on o�ine-

online �ne-tuning on the same task while we are trying to learn new tasks, or perhaps due to additional

challenges of real-robot RL. Therefore, we make some per-environment design decisions for online RL

detailed in the respective environment training sections.

G.2 MetaWorld Experiments

G.2.1 Simulation Setup

Training/Eval Task Selection. We manually select 20 training tasks from MT50 benchmark in the

Metaworld environment. These tasks are used for both reward model training and policy pre-training. The

training tasks include: Button-Press, Button-Press-Topdown-Wall, Coffee-Pull, Dial-Turn,

Door-Open, Door-Unlock, Drawer-Close, Faucet-Open, Handle-Press, Handle-Pull-Side, Peg-Insert-Side,

Pick-Place, Plate-Slide, Plate-Slide-Back-Side, Push, Reach, Stick-Push, Stick-Pull,

Window-Open, Hand-Insert.
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We also choose another 17 tasks from the MT50 benchmark for reward model evaluation and 8 of tasks

are selected for downstreampolicy �netuning.∗ The evaluation tasks include Window-Close, Sweep-Into,

Soccer, Reach-Wall, Push-Back, Plate-Slide-Side, Plate-Slide-Back, Pick-Place-Wall, Handle-Pull,

Handle-Press-Side, Faucet-Close, Door-Lock, Door-Close, Coffee-Push, Coffee-Button, Button-Press-Wall,

Button-Press-Topdown. These tasks are visually similar to the training tasks, but the tasks are di�er-

ent. The 8 tasks used for downstream policy training are Window-Close, Reach-Wall, Handle-Pull,

Coffee-Button, Button-Press-Wall, Door-Lock, Handle-Press-Side, Sweep-into.

Figure G.3: Example camera
viewpoint in Metaworld.

Environment Details. We use Metaworld [394] with the default 3rd-

person camera viewpoint, pictured in Figure G.3, and also 4-dimension

proprioception input (x, y, z, gripper). The policy action space is the de-

fault one fromMetaworld represented as a 4-dimensional relative action

space for (∆x,∆y,∆z, gripper). Unlike the Metaworld environment se-

tups in prior reward learning papers, we do not include goal/ground

truth state information. We also terminate the environment on success.

Both of these choices were made to mimic a real-world robot learning setup. The time horizon of each

episode is limited to 128 steps.

G.2.2 Training Details

For Ddemos, we select 20 tasks from the MT-50 benchmark. Each task consists of one human-labeled an-

notation, four augmented annotations, and �ve optimal trajectories produced by the MetaWorld built-in

planner. We render images at the default resolution of 640x480, centercrop to 224x224 and embed the

image with DINOv2 encoder.

∗These 17 tasks were chosen for sharing at least some characteristic with a training task.
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Side Camera

Top Camera

Figure G.4: Real World Bimanual Robot Setup. Our real-world setup consists of a top-down and side
camera mounted to a table where two Koch v1.1 low-cost arms are mounted. This setup allows us to
perform bimanual tasks and easily collect data with another pair of low-cost “leader” arms mounted to the
same table.

We pre-train the policy with IQL [171] for 100K steps with learning rate 0.001, gamma 0.99. We use

a three layer MLP of size [768, 512, 256] for both the policy and value function network. The training

procedure is described in (??)

For the various hyperparameters for online policy learning we used in MetaWorld as described in

Section G.1.1.3. We use 10 critics and sample 2 of them during training, LayerNorm in both the critic and

policy, and an update-to-data ratio of 4 for the critics. We are not sampling from o�ine pre-training data

during online nor are we training the target critic with the entropy term so the implementation is identical

to Warm-Start RL [416]. We warm-start online RL for 4000 steps.

G.3 Real Robot Experiments

G.3.1 Robot Experiment Setup

We use the Koch1.1 bimanual arm setup for data collection and learning [47].† Altogether, four total arms

(2 for data collection) cost ∼$1000, letting us demonstrate ReWiND enables real-world online RL of new

tasks even with very low-cost hardware and noisy control. The observations consist of RGB images from

†https://github.com/jess-moss/koch-v1-1
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a Logitech C930e top camera and side camera (pictured in Figure G.4). We control the robot with absolute

joint position control at a frequency of 30Hz. We collect a small dataset of 10 demonstrations over 20

tasks, and then use 5 demos per-task for the reward function. We found the o�ine-trained policy to be the

primary bottleneck to optimizing rewards in unseen tasks, so we used 10 demos per-task for o�ine policy

training.

G.3.2 Real Robot Training Details

We use a small, instruction-tuned, open-source LLM, Mistral-7B-Instruct-v0.3 [153], to generate 9

additional instructions for each task for instruction augmentation.

For the small dataset in real robot experiments, we manually choose 15 tasks in the Koch tabletop

setting, and each task includes 5 trajectories and 10 annotations. The evaluation set is 5 other random

tasks, which are irrelevant with the tasks in the small dataset. We use this evaluation set for o�ine metrics

and validating various design choices.

Unlike the MetaWorld experiments that use an MLP-based policy, we use an action-chunked policy

with temporal ensembling for the real robot. We found chunking to lead to more stable bimanual manip-

ulation on the Koch arms. We implement the action chunking with a Transformer policy that predicts 60

actions at each timesteps corresponding to 2 seconds of actions. We also implement a Transformer-based

critic. During rollouts, we then use temporal ensembling [410]. Here, the current action is ensembles with

the last 60 timesteps’ predictions according to an exponential weighting schemewi = exp(−m∗ i), where

we use m = 0.01 or m = 0.1 depending on the task. We found m = 0.1 to work well for tasks requiring

grasping solid objects as it weights recent actions more heavily, necessary for ensuring the policy actually

commits to the grasp, andm = 0.01 to work well for non-grasping tasks as it results in a smoother policy

We train each policy for 20k steps o�ine on our o�ine dataset using IQL with AWR for policy extrac-

tion. We train using a batch size of 256, use 5 critics, and subsample 2 critics at each training step. We use
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LayerNorm only in the critics as we found that LayerNorm in the action-chunked policy could potentially

hurt RL performance. We also warm-start online RL for 3000 steps.

Then, we train the policy online as described in Section 10.3.2. During online training, we collect a

single rollout, add it to the replay bu�er, and then train for 75 gradient steps. Then, at each gradient step,

we sample our bu�er such that 50% is the o�ine training data, 25% is online failure trajectories, and 25%

is online successful trajectories. This sampling approach helps upsample successful online trajectories.

For every actor gradient step, we do 5 critic update steps to more quickly train the critic online. We train

online for 50k actor steps, which takes approximately 1 hour as there is no minimal waiting time for

policy training due to a threaded implementation that trains the policy while the last iteration’s policy

checkpoint is used for rollouts. This parallelization nearly doubles the rate at which we are able to collect

policy rollouts.

During real-world policy rollouts, it is important for the robot to take safe actions that will not crash

into other objects or the table. However, we found that when regularizing the policy’s KL divergence

against a max-entropy prior as is the case in the entropy maximization objective in standard SAC [122], the

growing entropy term would cause the policy to produce largely random actions. Therefore, we regularize

against the pretrained policy’s distribution to encourage reasonable behaviors throughout the process of

learning, similar to the SAC update rules from Pertsch, Lee, and Lim [282] and Zhang et al. [402]. Thus

the π and Q updates follow:

π ← max
π

Eπ

[

Q(o, z)− αKL(π(·|o, z) || πpretrained(·|o, z)
︸ ︷︷ ︸

pre-trained policy guidance

]

(G.1)

Q← min
Q

Q(o, z) = r + γ
[

Q(s′, z′, d′)− αKL
(
π(·|o, z) || πpretrained(·|o, z)

) ]

(G.2)

We set α in both equations to a �xed value of 10.0 on tasks where grasping solid objects is not required.

For others, we set it to 20.0 to ensure the policy doesn’t degenerate from its grasping action early in
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training. We found that lower KL penalties could result in the policy falling into locally optimal but globally

suboptimal behaviors, such as moving a cup with the arm instead of actually picking it up.

G.3.3 Real Robot Tasks

We collected 10 demos per-task over 20 tasks on the Koch arms. We train the reward function on 5 demos

per-task and the policy on 10 demos per-task. We list these training tasks below.

Move the orange cup from the left to the right, Move the orange cup from the right

to the left, Put the orange cup on the red plate, Put the red cup on the red plate, Separate

the blue and red cups, Fold the blue towel, Open the green trash bin, Open the blue trash

bin, Throw the banana away in the green trash bin, Throw the banana away in the blue trash

bin, Put the red marker in the red trash can, Put the pink marker in the green trash can,

Put the blue tape in the box on the left, Put the banana in the box, Put the orange cup

in the box, Put the blue cup on the red plate, Separate the orange and blue cups, Open

the red trash bin, Throw the banana away in the red trash bin, Put the red tape in the

box on the right.

In addition, we present rollouts of the �ve online tasks in Figure G.5. We also provide additional

descriptions of these tasks below:

• Separate the blue and orange cups: the robot must separate the two cups in the middle

• Fold the blue towel: the robot must fold the towel in half.

• Open the red trash bin: the robot is surrounded by clutter compared to the training data above

and must open the trash bin

• Put the orange cup in the red plate: the robot picks an orange cup and must place it on a

plate that is further away from the training data distribution
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separate the blue and orange 

cups 

fold the blue towel 

open the red trash bin 

put the orange cup in the red 

plate

put fruit-colored object in 

the box 

Figure G.5: We present rollouts for the 5 tasks we use for online RL. The �rst two tasks are in-distribution
to the policy, while the latter 3 tasks are out-of-distribution with respect to visual, spatial, or semantic
generalization.

• Put fruit-colored object in the box: we refer to a “fruit-colored" object to test the robot’s

ability to handle semantic generalization.

G.4 Additional Results

G.4.1 Additional Metaworld Reward Analysis

In Figure G.6 we plot the confusion matrices of di�erent reward models on training tasks in addition to the

evaluation task plots of Metaworld in Figure 10.4. LIV, RoboCLIP and GVL are not pretrained or �ne-tuned

on the etraining tasks while VLC, LIV-FT and ReWiND are. We can see both ReWiND w/ OXE dataDopen-x

and ReWiND w/o OXE data Dopen-x are the best, having the clearest disparity between the diagonal and
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Figure G.6: Metaworld Reward Confusion Matrix on 20 Training Tasks. For each training task,
we compute rewards for all combinations of demonstration videos and language descriptions. ReWiND
produces the most diagonal-heavy confusion matrix, indicating strong alignment between unseen demos
and instructions.

o�-diagonal elements. LIV-FT also works well with a diagonal-heavy matrix. However, its disparity is not

as clear as ReWiND.

G.4.2 MetaWorld Sample E�ciency Results

In this section, we analyze the sample e�ciency of ReWiND against baselines in Metaworld. Figure G.7

plots the learning curves for all downstream policy training tasks. Each panel corresponds to one speci�c

task. And Figure G.7i displays the average of all 8 downstream tasks we used for policy �ne-tuning. We

can see from the average IQM plot that ReWiND achieves higher success rate than other baselines with

the same number of timesteps and ReWiND is generally more sample-e�cient at any timestep.

G.4.3 Real-World Reward Analysis

Table G.1: Evaluation Metrics on Real-world Unseen

Tasks: Comparsion between reward models in real-world un-
seen tasks with rank correlation ρ and r.

Model LIV LIV-FT RoboCLIP VLC GVL ReWiND

ρ ↑ 0.22 -0.18 0.04 0.20 0.57 0.91

r ↑ 0.23 -0.13 0.04 0.19 0.52 0.91

Weevaluated the performance of ReWiND

in Metaworld in Section 10.4.1. In this

section, we analyze how ReWiNDworks

with real-world data. It can be seen from

Table G.1 that ReWiND has the high-

est Spearman’s rank correlation (ρ) and

Pearson’s rank correlation (r) among all

reward models. Also, in �g. G.8 and �g. G.9, ReWiND has the best alignment between true-paired video
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Figure G.7: Metaworld success curves. Task-level success rate learning curves plotting mean and shaded
standard deviations. The bottom right �gure plots the overall average across all tasks in terms of IQM and
95% con�dence intervals.

and language instruction in both training tasks and unseen tasks, displaying strong generalization in new

tasks. Note that LIV, GVL, and RoboCLIP are not trained on these training tasks as they are zero-shot

models.

G.5 Ablation Study and Additional Analysis

In this section, we perform an ablation study of various ReWiND reward components and also perform

additional analysis of results not included in the main paper.
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Figure G.8: Real-world Koch Reward Confusion Matrix on 5 Unseen Tasks. For each unseen task,
we compute rewards for all combinations of demonstration videos and language descriptions. ReWiND
produces the most diagonal-heavy confusion matrix, indicating strong alignment between unseen demos
and instructions.
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Figure G.9: Real-world Koch Reward Confusion Matrix on 15 Training Tasks. For each training
task, we compute rewards for all combinations of demonstration videos and language descriptions. LIV-
FT, VLC and ReWiND are pretrained or �ne-tuned with these training task while LIV , GVL and RoboCLIP
are not

G.5.1 Ablation Study

We perform a thorough ablation study of ReWiND regarding how speci�c design choices in�uence demon-

stration reward alignment, policy rollout ranking, and input robustnessmetrics introduced in Section 10.4.1.

We ablate: instruction generation and video rewinding (Section 10.3.1.2); using OXE data (Section 10.3.1.1);

the need for target environment dataDdemos; and �nally, the use of �rst frame vs. full frame positional em-

beddings on the input observation sequence o1:T in the cross-modal sequential aggregator (Section 10.3.1.3).

Overall, the original ReWiND model performs the best on most metrics, and is often the second best

on other metrics where it is not the best. We go through and analyze each ablation below:

• −Targ. Env Data (i.e., no Ddemos, only Dopen-x) does not perform well on training demonstration

ρ alignment in Table G.2(a) and is also unable to properly distinguish failed, almost successful, and

successful policy rollouts in Table G.2(b). Yet, it can perform well in terms of input robustness as it

still maintains OXE data.
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Table G.2: Ablation Study: subtracting (−) and adding + various ReWiND components on training and
evaluation task (a) demo reward alignment, evaluation task (b) policy rollout ranking order and reward
di�erence, and evaluation task (c) input robustness.

Model
(a) Demo Reward Alignment (b) Policy Rollout Ranking (c) Input Robustness

Train Demos ρ ↑ Unseen Demo ρ ↑ Rew. Order ρ ↑ Rew. Di�. ↑ Avg. ρ ↑ ρ Variance ↓

Original ReWiND 1.00 0.79 0.82 0.41 0.74 0.04

− Targ. Env Data 0.55 0.77 0.18 0.08 0.78 0.04
− Open-X Subset 1.00 0.64 0.76 0.39 0.55 0.03
− Video Rewind 1.00 0.69 0.56 0.27 0.66 0.02

− Instr. Generation 1.00 0.66 0.62 0.30 0.52 0.07
+ Full Pos. Embeds 0.99 0.85 0.71 0.33 0.78 0.06

• Meanwhile, (−Open-X Subset) su�ers in terms of unseen task reward alignment (a). It also su�ers

in terms of input robustness (c) as OXE data helps with seeing more language instructions.

• −Video Rewind performs poorly on (b) policy rollout ranking metrics against the original model,

demonstrating that rewinding signi�cantly helps with properly distinguishing failed policy

rollouts, as designed.

• −Instruction Generation performs poorly on (c) language input robustness metrics, highlighting

how LLM instruction generation helps the reward model be more robust to diverse inputs.

• +Full Pos. Embeds actually performs better on unseen demo ρ in (a), but performs worse in (b)

policy rollout ranking metrics. This performance drop likely occurs because the reward model be-

comes slightly over�t to just predicting increasing rewards (by using the positional embeddings to

cheat) regardless of what the input observation video is. ReWiND’s model as presented in the main

text uses just �rst-frame positional embeddings for this reason (Section 10.3.1.3).
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